S T
OSI/UK User Group Newsletter

Vol.2 No.5 August/September 1981

— 7,

7

¢ 7
il e

»
p

Communications
Modem communications for your system

The BASICs of machine code
Superboard 32x64 display: the full story

-y

Get your system
on the BUS...

...the IEEE 488 to be exact!

Our 680 expansion board connects directly to all Ohio Scigntific pg§ed
computers (including the UK101) and provides the following facilities:

Centronics compatible output port
IEEE compatible /O port
2K of battery backed non-volatile RAM

Software supplied with the board provides drivers for the two output ports.
When used with the OSI Superboard the 680 board provides a very powerful
IEEE controller offering approximately 5 times higher execution speed, more
built-in /O capability and a lower price than an equivalent minimum system
from Commodore or Apple Corporation.

Price: £165 complete with documentation, guarantee and all cables and
connections.

MUPROMPT

EPROM/EEPROM programmer .

Can your programmer load data from a 2716, a 2532 and a RS232 link and then
program the edited results into a 2764? If not then you need MUPROMPT. It
turns your Superboard, UK101 or PET into a real development tool. The system
is idealy suited for use by Universities development labs and all those _
developing EPROM software. MUPROMPT requires a 32K system for operation
and will read/verify/write to 2758 (both types) 2516, 2716, 2532, 2732,2764,27128
(conforming to Intel standard) EPROMs and 2816 EEPROM.

Price: £385 complete with firmware, cables and full guarantee.
MUPROMPT is also suitable for small scale production of firmware. For larger
requirements, the MUCOPY is a stand-alone insrument designed to

complement MUPROMPT and capable of programming 8 or 16 devices
simultaneously from a master. Please call for further details on both units.

MUMON

— a new monitor for OSI serial systems

How many times have you wanted a warm-start on your OSl serial disk system?
or machine code facilities? or even a built-in memory test? MUMON offers all
of these facilities and many others in a single replacement EPROM taking less
than 10 minutes to fit. The firmware package includes the EPROM, fitting
instructions and a comprehensive manual defining its operation and uga,
Price: £27 ex-stock. Overseas customers please add £3 for Airmail,
All prices quoted exclude VAT.

MUTEK

DU s Ww

O o™

n

13
17

23
25

27

Contents

BASIC programming notes
SPC, TAB and POS — Bob Bonser
Hidden aspects of BASIC — Jack Pike; Passing Variables
CALL conversion routine
BASIC programs in EPROM — Jan Dyson
Machine code programming notes
CEGMON Screen Fill; Monitor conversions
Extending CLEAR — Jack Pike
GETKEY routine for the UK101 — John Leach
Disk Notes
Cassette printer/port on C1E with CEGMON and OS-65D
Features
The basics of machine code — Tom Graves
Make your computer communicate — Richard Elen
Reviews
" Word Wizard, Codekit and BASIC 5 from Premier
Premier Publications” BASIC 4 — Richard Elen
Hardware feature
32x64 Display for Superboard Il — J. R. Fornalski

The OSI/UK User Group Newsletter is published by the OSI/UK Group, ©1981.
Unless otherwise stated, copyright on each article is held jointly by the Group
and the author. Requests for permission to reprint articles will normally be
given where the article was origninated by the Group, if the request is madé in
writing. The Newsletter is published approximately bimonthly, subject to the
limitations of our essentially ‘spare time’ operation. Subscriptions run from
January to December: thus subscriptions received during the year are
automatically back-dated and new members receive the year’s issues to date.
The UK subscription is £10 per annum; overseas subscriptions are £11 surface
mail, £14 airmail. All subscriptions include six issues of the Newsletter. Volume
1, produced during our first year and consisting of four issues, is available as a
complete set at £7 UK, £8 overseas, including postage. Cheques should be
made payable to the OSI/UK User Group.

Advertising space is available in usual magazine format positions: rates are
available on request. Small ads are accepted at a rate of 5p per word and will
normally be published in the next available Newsletter.

The OSI/UK User Group Newsletter welcomes contributions of any length on
subject which will interest members. Articles should preferably be typed or
printed double-spaced on one side of the paper, or legibly handwritten.
Articles will also be accepted on cassette or disk.

The OSI/UK User Group exists to assist and inform the user of Ohio Scientific
and related computer systems, primarily via the Newsletter. Written queries
are welcomed, although due to committments we can only guarantee to reply
when we have time available. An SAE should be enclosed with all queries, and
if data sheets etc. are required, the SAE should be sufficiently large!

All enquiries, subscriptions, articles etc. should be addressed to the OSI/UK
User Group, 12 Bennerley Road, London SW11 6DS, England.

Under new management

As you will no doubt know, we have
had some difficulty getting the last
couplé of Newsletters into the postal
system, this being the second issue
which has been substantially late. Tom
Graves gave several of the reasons in
the last issue: Tom has had to get his
business together and George and |
have had to put earning money first as
well. Quite simply, under the present
economic state of this country, we all
have less free time (‘free’ in more
senses than one) to play with. Hopeful-
ly, our centralising the User Group in
London (apart from production aspects
of the Newsletter) will enable Tom to
concentrate more on his business, and
us to use our limited time more effi-
ciently in dealing with your queries. It
is easy to underestimate the time it
takes to deal with complex technical
problems, particularly by telephone,
and while there is just the three of us, it
is bound to be difficult. As a result, we
would be grateful if technical queries
by phone could be kept to a minimum
for the time being, unless they really
are urgent. Letters, of course, should
be accompanied by an SAE.

Which brings us to another point. By
rights, we should be charging rather
more for membership than we do, as
our primary function (producing the
Newsletter) costs a great deal to per-
form. In addition, postage and tele-
phone costs are always rising along
with everything else in these inflating
times. To offset a potentially crippling
financial position, we are making more
pages of the Newsletter available for
advertising, as you will see from this
issue. The resulting change of style
will, we hope, enable us to avoid
increasing subs by such a large amount
at the end of the year. We are also
examining other means of increasing
cost-effectiveness, to help us give you
the best service at the least possible
cost.

2

Of course, one way in which we can
help you better Is f you can help ust
Even for a small bimonthly magazine
(and we do more than jusi produce
that) we are heavily understaffed, and
we would very much like to hear from
members who feel they can help out:
people who know a fair amount about
certain aspects of OSI equipment and
can answer the odd letter, or -those
who can help a little with administra-
tion. We are presently badly overwork-
ed! Any offers?

Finally, the existence of this Newsiet-
ter (and of the Group, in many ways)
relies on the contributions members
make to the Newsletter. If you have an
interesting comment, routine or dis-
covery, please tell us about it. It is quite
disheartening to see little snippets
from members appearing in the
monthly magazines, with never a word
from them to us! If you do write the
odd item for the commercial maga-
zines, please at least send us a photo-
copy! The items which appear in the
monthlies often need adjustment for
other machines, or can be linked with
other contributions to produce a better
result than a mere note amongst a
pageful of items in the monthlies from
people who have just discovered POKE
15! We may not be the most accurate
(we're not the worst, either!) but we do
try, and we’re not a profit-making
group. We exist to provide a service,
and the quality of our service doesn’t
just depend on what we do — it
depends on all of us. We are not the
Group: (we are merely its co-
ordinators. You and we are the Group,
and how good we are depends on how
much we are all willing to put into it.
Without that effort we cease to exist as
a User Group. And that would be a
pity.

Richard Elen

BASIC NOTES

The SPC, TAB and POS commands
in OSI BASIC

Bob Bonser

The SPC command is used in print statements in the following way:

PRINT SPC(X)"EXAMPLE"
where X may range in value from 0 to 255. It may be thought of as a shorthand way
of writing:

A$=" 255 blanks ": PRINT LEFT$(A$,X); "EXAMPLE"
If X=0 then 256 spaces are printed; otherwise it behaves as expected. If a comma
is inserted between the SPC(X) and "EXAMPLE” then "EXAMPLE” will be printed at
the start of the next comma spaced field i.e. if X=5 "EXAMPI E” would be printed
starting in column 14.

The TAB command is used again in print statements to format the output; for
example:

PRINT TAB(X)"EXAMPLE"

X can take values from 0 to 255. When using this command some thought must be
given to the output required as the following examples will show:
PRINT TAB(4)"THIS"TAB(6)"THAT"
gives as output
THISTHAT
because the cursor is already in column 8 after printing "THIS” and cannot step
backwards.
PRINT TAB(12)"FIRST” CHR$(13) "AND THIS SECOND"
gives
AND THIS SECOND
as the output; but if you run the program again after having first typed SAVE
then you will see "FIRST” printed and then overwritten again.

The operation of TAB can be altered by using POKE 14,0 which has the following

effect. Using the statement PRINT TAB(A)'THIS”;: POKE 14,0: PRINT
TAB(B)'THAT" —
If A=0 and B=0
THISTHAT
If A=4 and B=0
THISTHAT
If A=4 and B=1
THIS THAT
If A=0 and B=10
THIS THAT

Note the effect of the POKE 14,0 command.
A little used function OSI BASIC is the POS command. It is used in the following
way: ,

PRINT "HELLO"; : X=POS(0)
This will result in X taking the value of 5. If the semicolon was replaced by a
comma then X would have the value of 14 and if the semicolon was omitted then X
would equal 0. The explanation of this odd result is as follows.

3

The value of X is the column number where any further printing would start. A
use of this command is to right justify output.
100 INPUT "3 values ";A,B,C
110 PRINT"EXAMPLE "; A;
120 X=POS(0)-1
130 PRINT CHR$(10); CHR$(13);
140 PRINT TAB(X-LEN(STR$(B)));B;
150 PRINT CHR$(10); CHR$(13);
160 PRINT TAB(X-LEN(STR$(C)));C;

Also this command can be used to simulate a move cursor left command:

100 INPUT "How many”;Q

110 A$="A TEST OF THE POS COMMAND"

120 PRINT A$;

130 X=POS(0): PRINT CHR$(13);

140 FOR Z=1 TO X-Q: PRINT CHR$(11);: NEXT
150 PRINT "*"

Hopefully, the above has removed a little of the mystery that has surrounded
these commands.

Hidden aspects of BASIC

Jack Pike writes: In case you are under the impression that there is little left in
Microsoft BASIC in ROM that you are unaware of, here is a demo program for
you. The most important feature of the program is the ‘LOAD: INPUT AY’
combination for preventing program exit on hitting RETURN in answer to an INPUT
call. Among the other things demonstrated is that CLEAR clears the stack as well
as all the variables with implications on its use in subroutines, and the comment
line 5, which prevents accidental entry to the subroutine. This program can be
exitted without using the Break key because it inputs some numerical variables as
well as strings. An input sequence such as <sPACE, Z, Z, RETURN, RETURN>> will exit
the program.

0 REM DEMO PROG - Jack Pike

2
3 GOSUB 6 (to input routine)
4

5 SUB * test INPUT *

6 LOAD: INPUT"Hit space bar & input A”; A$, A, A(-A*(A<))

7 PRINT "#" A$ " " A CHR$(A) A(.) "#

8 CLEAR: REM clears GOSUB return address

9 GOTO : (start)

While on input, | have only recently realised that the input delimiters comma and
colon are different. Colon terminates the input to variables on the line (it also
seems to have that effect when it is the first character on the line in immediate
mode). This property of : could be useful in data files when comments could be
added to the file following the variable value, e.g. 9: Stock item no,

4

e W —

g

Extra Mathematical Functions for BASIC

The mathematical functions provided in BASIC may seem to have been chosen in
a rather arbitrary manner (ATN’s main function according to OSI seems to be to
get wiped out whenever they want room for a new keyword!). Here, for those
who would like to use some of the functions not included but who cannot
remember the derivations, are the remainder of the trig and hyperbolic functions.
These could be declared in a program by using DEF.

The list below has been adapted from 24 Tested Ready-to-Run Games Programs
in Basic by Ken Tracton (TAB Books). The following functions which are not typical
of standard BASIC library functions may be easily implemented by the following
formulae: .

ARCSIN(X)=ATN(X/SQR(X*X+1))
ARCCOS(X)=ATN(X/SQR(X*X+1))+1.5708

ARC SEC(X)=ATN(SQR(X*X—1))+(SGN(X)—1)*1.5708
ARCCSC(X)=ATN(1/SQR(X*X)—1))+(SGN(X)—1)*1.5708
ARC COT(X)=ATN(X)+1.5708

ARC SINH(X)=LOG(X+SQR(X*X+1))

ARC COSH(X)=LOG(X+SQR(X*X-1))

ARC TANH(X)=LOG((1+X)/(1=X))/2

ARC SECH(X)=LOG((SQR(X*X+1)+1)/X)
ARCCSCH(X)=LOG((SGN(X)*SQR(X*X+1)+1)/X)
ARCCOTH(X)=LOG((X+1/(X—1))/2
COT(X)=T/TAN(X)

CSC(X)=1/SIN(X)

SEC(X)=1/COS(X)

COSH(X)=(EXP(X)+EXP(—X))/2
COTH(X)=EXP(—X)/(EXP(X) —EXP(—X))*2+1
CSCH(X)=2/(EXP(X)—EXP(—X))
SECH(X)=2/(EXP(X)+EXP(—X))

SINH(X)=(EXP(X) —EXP(—X))/2
TANH(X)=EXP(—=X)/(EXP(X)+EXP(—=X))*2+1

CALL conversion routine

If you have the new BASIC 1 chip with CALL, or have other need for a program to
check the hex equivalent of a value, this subroutine from Dave Woolcock does
the trick simply. Enter the routine after setting X to the value to be converted; the
hex equivalent is returned in X$.

15000 LO=X AND 255: HI=INT(X/256): X$="$": X=HI: GOSUB 15010: X=LO
15010 Y=(X AND 240)/16: GOSUB 15020: Y=X AND 15

15020 X$=X$+CHRS$(Y+48-(Y>9)*7): RETURN

4

Implementation of BASIC programs in EPROM
lan Dyson

The standard board microcomputer provides an acceptable range of facilities
which is available at switch on. The majority of computer enthusiasts accept the
five minute delay which may be required to load a program from cassette, but |
suspect that many would be discouraged if they had to load the BASIC interpreter
from tape before they could use the machine. Similarly, when the computer is
being used in machine code, the enthusiast will probably store and load programs
using tape. (Implementation of ExXMon on EPROM, though, has proved invalu-
able).

There is a substantial potential for using board computers for industrial and
laboratory applications. With the addition of a VIA, the system can become a
cost-effective dedicated controller or data logger; BASIC can be used for number
crunching or report writing. For these applications we may be unable to rely on an
enthusiastic operator; an industrial controller must have the machine code in
ROM with auto-start and as few external switches as possible. If BASIC is to be
used where operator interaction is required (Report Writer, Results Sorter etc.),
there are advantages if the BASIC program is in EPROM: no skill is required to
load the program, there are no load errors and no accidental corruption of the
program can occur.

The use of EPROM is well established for machine-code applications; the
technique is equally valid for BASIC programs.

The BASIC interpreter of the UK101 and Superboard requires that the addresses
which bound the memory reserved for storage of the program and for variable
storage when the program is running are defined in such a way that the
interpreter can find the succession of instructions and can store variables at real
memory locations without writing over the program.

Normally, the program is packed in from the bottom of the user memory, a
record of the top of program memory being kept; the memory above the program
is used for variable storage when the program is running or when the machine is
used in the direct mode.

For our requirements it is fortunate that these two areas of memory can be
treated independently by the interpreter. The program storage can be at
addresses above that used for variable storage provided the relevant pointers are
adjusted.

The relevant pointers are in the zero page of memory:

1st line of BASIC pointer ($0079, $007A), indicates the address at which the first
line of the program starts. Each encoded statement includes the address of the
next. As each statement is interpreted, a note of the memory location of the
next statement is updated. The system can follow the program without
reference to the next pointer which is incremented as the program is written
or loaded in order that it may be used to prevent the overwriting of program
by variables.

start of variables pointer ($007B, $007C), indicates the memory address above
which can be used for storage of variables without overwriting the program.
top of memory pointer ($0085, $0086) restricts the top of memory address
which is available for BASIC and is usually set up at cold start.

The pointers are set up by cold start and NEW as follows:

»)

$0079 01 points to $0301, first line of BASIC

$007A 03
' $007B 04 points to $0304, start of variable space when rio program
, $007C 03 stored
£$0085 XX

$0086 xx points to top of BASIC user memory

$0300 00 start of program null

$0301 00 end of program nulls

$0302 00

When a program is loaded, the start of variable pointer is changed to an address

above that used for program storage.

Using EPROM

To store a program in EPROM,, it is convenient to use an address block above the
user RAM. It is necessary to change the contents of the first line of BASIC pointer
to the new start address; the location below the start address must contain a null.
The top of memory pointer has to be changed for writing or loading a program
into abnormal locations (otherwise an OM ERROR will occur). The latter change
should not be made when RUNning the program.

To write the program, it is necessary to temporarily select a block of RAM at the
intended EPROM address. The program should have been written, tested and
saved in advance. The method of implementation is best indicated by the
following example of putting a program into EPROM at address $3800 onwards.

Before starting it is a good idea to fill the block of RAM with FF’s in order that
unused locations are not programmed when the EPROM is burnt.

The following machine code is entered at the beginning of the block. It changes
the first line pointers to $3811, puts the null at $3810 (when setting up the RAM)
and then jumps to BASIC warm start.

$3800 LDA #$11 A9 11
$3802 STA $79 8 79
$3804 LDA #$38 A9 38
$3806 STA $7A 85 7A
$3808 LDA #$00 A9 00
$380A STA $3810 8D 10 38
$380D JMP $0000 4C 00 00

Perform cold start, reset, and enter the monitor. Manually set the top address
of the temporary RAM in the pointer $0085 and $0086 (00 and 40 in our example).
Set the monitor address to .3800 when pressing G will warm start the system.

After typing NEW RETURN, the program can be loaded normally except that the
code is stored at $3811 instead of $0301. The contents of the memory block may
be saved as machine code, MOVEd to a more convenient area of RAM and saved
as machine code or used directly for ROM burning. After a cold start the
computer can be used in BASIC without corrupting the special program. (If the
user RAM extends to the special area, the user memory must be restricted in the
usual way at cold start).

7

To test the program:
1. Cold start to restore pointers
2. Reset
3. Start at $3800 in the monitor mode. This changes the first line of BASIC
pointer and performs a warm start.
4. On RUN, the program, in its abnormal location, will be followed; the
whole of the user RAM above $0304 is available for variable storage.
The program can be burnt into EPROM directly from the temporary RAM or
after MOVEing and saving. After a cold start, the computer can be used in BASIC
for EPROM burning.

\

» &

Running the program in EPROM follows a BASIC cold-start and entry through the

Monitor as described tor testing. 1he program may also follow a warm start and
Monitor entry. It may be interrupted, continued and re-RUN as a normal program
but cannot be edited. The EPROM program may be co-resident with a RAM
program and the two can be RUN alternately by resetting the pointers at $79/$7A
to 01/03 to warm start in RAM or reset and warm start which is followed by monitor
entry for the EPROM program. Similarly, several EPROM programs may be
implemented and activated by their own machine code entry.

MACHINE - CODE NOTES

CEGMON screen fill

CEGMON, unlike the original monitor, uses a subroutine to clear the screen,
which can be called into action very easily. It resides at $FES9-$FE6F and is largely
relocatable. If itis moved to start at $0240, for example, (MFE59,FE6F>0240), it may
be called from BASIC and used as a screen fill. The character to be used is POKEd
into 587, and the routine is called by POKE 11,64: POKE 12,2: X=USR(X). If you
have the new BASIC 1 chip, CALL 576 is sufficient to instantly fill the screen. (This
and a couple of other items were kindly supplied by the UK101 User Group, 9
Moss Lane, Romford, Essex).

Monitor mods

Some of the new monitors for our machines are less compatible than others.
Sometimes changes are minor; sometimes less so. Here are a couple of useful
conversions:

Key press routine: SYNMON and Superboard Series 2 CEGMON is POKE 11,0:
POKE 12,253: X=USR(X): X=PEEK(531). For other CEGMONs, use PEEK(533)
instead of 531. Under WEMON, the routine is POKE 11,52: POKE 12,248:
X=USR(X): X=PEEK(531)

CompShop’s Super Space Invaders needs these mods for CEGMON use: Load as
a machine-code program (Break M L); after machine code and BASIC sections
have loaded, Break and Warm Start; in lines 984, 986 and 1450 change 255 to 251; in
immediate mode, enter POKE 660,76: POKE 661,232: POKE 662,28; then RUN.
We would be grateful to hear of other conversions to common routines and
programs so that they run under the various available monitors.

8

L

»ow

|

N'{
&
.

»

|

l

#1

#

1
6? O
,y;

Extending CLEAR
Jack Pike

After the discussion of CLEAR in earlier Newsletters | had a go at defining an
improved CLEAR. | wrote a modification to the BASIC $BC routine to add an
optional parameter to CLEAR, such that CLEAR(N) would release N bytes from the
top of BASIC. Breaking into the $BC routine indeed provides a route for an
extended BASIC. Something more than 8K should be set aside as the recom-
mended location for languages. A 16K slot is probably needed. | was pleased to
see that you are thinking about the problem of ‘where to put things’.

The syntax for the extended command is CLEAR(N), where N is an expression
giving the number of bytes to be ‘freed’ at the top of RAM (-32768 < N < 32768).

DO 02 BNE +2 ; Displaced BASIC operating code
E6 C4 INC $C4 ; from $BE to $C1

8A TXA ; store X

48 PHA ; on stack

A2 00 LDX #%00

A1 C3 LDA ($C3, $C4) ; get current BASIC character

Test previous and current BASIC character for CLEAR token and ‘(’.

A6 E2 LDX $E2 ; previous character

85 E2 STA $E2 ; current character

EO 9A CPX #%$9A ; is previous character CLEAR?
DO 1B BNE +27 ; no, then return

C9 28 CMP #%$28 ; is current character “("?

DO 17 BNE +23 ; no, then return

Get variable value following CLEAR(as 15-bit signed integer in $AE (hi) and $AF
(lo).

20 F5 AB JSR $ABF5 ; get value of expression

20 05 AE JSR $AE05 ; put value in $AE (hi), $AF (lo)
Change pointer to top of BASIC RAM at ($85, $86) and string pointer at ($81, $82).
38 SEC

A5 85 LDA $85 ; current top of BASIC (lo)

E5 AF SBC $AF ; new top of BASIC

85 85 STA $85 ; amend $85 and

85 81 STA $81 ; bottom of string space

A5 86 LDA $86 ; repeat for pointer (hi)

E5 AE SBC $AE

85 86 STA $86

85 82 STA $82

Tidy up and return.

68 PLA ; replace X

AA TAX ; from stack

60 RTS ; and return

This routine is fully relocatable. Locations $BE to $C1 in the $BC routine should be
replaced with 20 xx xx EA, where the missing address points to the beginning of
the routine above.

. A

GETKEY routine for the UK 101
John Leach

The UK 101 lacks a GET command, as found in the PET. It is possible to overcome
this problem in BASIC by a clumsy series of POKEs to the keyboard memory
location, but decoding for any possible key is quite a problem, and takes so long
that it is easy to miss key entry by nimble fingers; a serious disadvantage is that
ctr-C has to be disabled.

This short Machine Code routine, written for the New Monitor (now the
standard monitor) allows the user to have complete control, CEGMONers and
WEMONers will have to find their own solutions.

10 REM GETKEY Machine Code routine

20 FOR =592 TO 619: READ Z: POKE 1, Z: NEXT |

30 DATA 173,79,2,240,5,32,231,249,208,4,141,19,2,96,32
40 DATA 0,253,169,0,141,79,2,169,1,141,20,2,96

50 REM LOAD, RUN and type NEW (protected from Cold Start once loaded)
60 REM

70 REM Demonstration program

100 POKE 11,80: POKE 12,2: POKE 591,1: REM Startup
110 X=USR(X): Z=PEEK(531): IF Z<>0 GOTO 130

120 PRINT “KEY NOT PRESSED”: GOTO 110

130 PRINT CHR$(Z): POKE 591,1: GOTO 110

The flag at 591 allows user control of the result of key pressing. If 591=1, the USR
routine returns 0 at 531 if no key is pressed, but if a key is pressed, 531 contains
the ASCII value of the key, and flag 591 is set to 0 before the routine returns to
BASIC. If 591=0, the USR routine returns 0 in 531, whether a key is pressed or not.

The use of the 591 flag allows the programmer to do something with the
character entered, and a?ter that the keyboard is dead until a POKE 591,1 is
encountered. This prevents keybounce, and multiple entry of keys, unless this is
wanted. Note that there is no need to disable cTri-C. Normal INPUT is not
affected.

The Machine Code routine uses New Monitor subroutines as shown.

0250 ADA4F02 LDA $024F ; Test 591 flag

0253 F005 BEQ $025A ; If zero, bypass Keyboard entry

0255 20E7F9 JSR $F9E7 ; Test for Key presses (Monitor)

0258 D004 BNE $025E ; If pressed, go and decode it

025A 8D1302 STA $0213 ; Set 531 to zero (0 in accumulator)

025D 60 RTS ; and return

025E 2000FD JSR $FD00 ; Keyboard input routine (Monitor)

0261 A900 LDA #$00

0263 8D4F02 STA $024F ; Zero 591 flag

0266 A901 LDA #$01

0268 8D1402 STA $0214 ; Spoil $FD00 comparison with $0213 i
026B 60 RTS ; on next call (otherwise $FD00 waits for entry) y
10

¥) @& DISK NOTES

‘S

14 Character names for OS65D.

A very useful hint from OS65D users in America points out that it is possible (and
quite easy) to alter the DOS so that 14 character names can be used. To do this,
make the following changes to the DOS.

Address find change to
$2DE1 $07 $OF
$2DE3 $06 $OE
§2DF1 $F8 ' $FO
2DF4 $08/ . $10
ﬁt/l DiR 0ot TonAAC & ‘IZ’éZi:Z Oclt. s 9 2L07 - 06

Apart from these modifications, the various utilities will have to be rewritten to
cope with the new directory format and a BEXEC* program should be ready to put
on the altered disk. Obviously it will not be possible to have as many entries in the
directory without more extensive changes to the DOS. It should be possible to
develop this idea further so as to have a code letter giving the type of file
(Assembler, Basic, Text etc.) and maybe even the date. If anyone follows this
through we would like to hear about it for a follow up article, especially if it
included details of a similar enhancement to 65U

CURRENT VERSIONS 65D

Most mini-floppy users have been supplied with 65D version 3.1. This version of
the DOS will only work successfully at TMHz and is not at all easy to convert.
Version 3.2, the NMHz version, is available, but buyers should be aware that N
means 1, 2 or 3.3; 1.5MHz operation is not catered for, although it may be
possible to alter 3.2 successfully. However, all speed freaks should take note ot
the fact that the 610 board disk interface derives its clock frequency for the ACIAs
from the processor clock, and thus alterations will have to be made here to
achieve standard data rates onto the disk. Does anybody know where 3.2 sets up
the NMHz variable at $267B?

Cassette and printer problem with a disk-based C1E under OS-65D having fitted
CEGMON
One reader writes: We operate a 32K C1E with single disk drive for school office
use, but fitted CEGMON as the machine is also used to teach programming to
young children (10-14yrs), CEGMON:'s editing facilities being invaluable here.
However, if you fit CEGMON, you then lose the use of the cassette and printer
port when under OS-65D, as the fitting of a C1E version of CEGMON relocates
this port to $F000, whereas OS-65D still thinks it is at $FC00, because that is where
the C2 monitor in SYNMON (used in the C1E) places it, and a C1E uses C2-style
disks. 1

S ” .

There are two possible solutions:

® Fit a four-pole, 2-way switch to re-address the ACIA correctly when in
0S-65D (i.e. to reverse the modification necessary when fitting CEGMON to
the C1E).

® Try to modify the OS65D operating system to relocate the cassette port from
$FCO00 to $F000.

It was this latter solution | chose to adopt, and | eventually came UE with the
discovery that five memory locations, loaded from track-0, have to have their
contents changed from $FC to $F0. They are: $24D0, $24D8, $24DC, $24{8 and
$2501.
Alteration of these locations requires that we:
e Read track-0 into memory, using a convenient start location: e.g. $4200 (it
normally loads to $2200)
® Using the extended monitor (or indeed the CEGMON monitor) change the
contents of the appropriate five locations from $FC to $F0
e Write the modified system back onto track-0 (preferably onto a new disk in
case of errors!)

The following procedure carries out the necessary modifications:

1) Boot disk to be modified

2) Enter kernel (type EXIT from BASIC)

3) EM (loads Extended Monitor. RETURN needs to be hit after every line unless
stated)

4) 1CA 0200=13,1

5) !GO 0200 (this gives menu for copier or track-0 R/W)

6) 2 (select track-0 R/W)

7) R 4200 (load track-0 to $4200, i.e. with an offset of $2000)

E
9) REEM
10) (@44D0
11) 44D0/FC FO
12) @44D8
13) 44D8/FC FO
14) @44DC
15) 44DC/FC FO
16) (@44F8
17) 44F8/FC FO
18) (@4501
19) 4501/FC FO
20) !GO 0200 (Menu for copier or track-0 R/'W)
21) 2 (select track-0 R/W)
22) W4200/2200,8 (writes system back to track-0)
23) E

And the job is done!

12

'y &

The BASICs of machine-code Part 6:

Before we start, we ought to tidy up a few errors that have crept in during this
series. The “Binary Beans” routine in Part 4 seems to have suffered the most; our
keyboard op didn’t make quite so much of a mess of it as of the renumberer in
that issue, but some errors came through. These are listed in the “Clitches”
section of this issue.

In the last section, some people were confused by my using both S (sign) and N
(negative) for the sign bit, bit 7; the former is Leventhal’s term, the latter is Zaks’,
and I'll stick to the ‘N’ version from now on. Also in the last part, two more
mistakes, one a keyboard error, the other a blunder on my part, I'm sorry to say.
The keyboard mistake was in lines 40 and 50 of the subroutine series — it should
have read ... C=1 (new line) 50 GOTO 100 ... not C=150 GOTO 100! The blunder
was that | have the carry value the wrong way up in the subtraction operation in
line 70: C should be 1 to start, not 0; so the line should read:

70 C=1: IF RES<0 THEN C=0

The subtraction routine is complicated in that it uses the inverse of the carry
rather than the carry itself.

In any case, now that we have the main processor flags under control, we can
look at the opcodes themselves, and simulate them by BASIC statements. As with
last issue, we will leave the problem of the variety of addressing modes aside for
the moment, and assume that — as happens with the 6502 itself — the addressing
is sorted out separately, leaving the contents of the ‘effective address’ in a
variable called MEM. The disentangling of that effective address will be dealt with
in the next part of this series.

We made a start last time by defining the entry point to the ‘flags’ subroutine for
most of the opcodes that affect them. We also need to make sure that all values
stay within the limits of an eight-bit word, from 0 to 255; OSI’s BASIC should be
capable of maintaining all values as integers, but if problems arise this will also
need to be checked with an INT statement.

5 REM — V flag test
10 V=0: IF (RES AND 64) THEN V=1
20 RETURN
25 REM — V and C+ update
30 GOSUB 10
35 REM — C+ only update
40 C=0: IF RES>255 THEN C+1
50 GOTO 100
55 REM — V and C- update for subtract
60 GOSUB 10
65 REM — C- only update for compares
70 C=1: IF RES<0 THEN C=0
80 GOTO 100
85 REM — C/ update for LSR, ROR divides
90 C=0: IF (RES-INT(RES))<>0 THEN C=1
95 REM — general N and Z update for most operations
100 Z=1: IF RES<>0 THEN Z=0
110 N=0: IF (RES AND 128)<>0 THEN N=1
115 REM — limit RES to eight bits wide
120 IF RES=>256 THEN RES=RES-256

130 IF RES<OTHEN RES=RES+256

Tom Graves

. 140 RETURN 13

We can now expand this as an almost complete look-up table for the 6502
opcodes. (Almost, because some of the logic operations are simple in machine
code but extremely complex in BASIC, and because the interrupt, stack and
decimal modes have no easy equivalents in BASIC at all — so unless you really like
getting confused ...). Remember that we only have three active variables: A, X and
Y. The flags C, V, N and Z are only single bits in a register, and can thus only
contain 0 or 1; and MEM and RES (result) variables represent temporary stores
within the processor itself. The table below shows all of the 6502 opcodes with the
exception of BRK, CLD, CLI, EOR, PHA, PHP, PLA, PLP, RTI, SED, SEI, TSX and TXS.

1000 IF OP$="ADC" THEN RES=A+MEM+C: GOSUB 30: A=RES
1010 IF OP$="AND" THEN RES=(A AND MEM): GOSUB 100: A=RES

1020 IF OP$="ASL" THEN RES=MEM*2: GOSUB 40: MEM=RES

1030 IF OP$="BCC" THEN IF c=0 THEN GOTO ...

1040 IF OP$="BCS"” THEN IF C<>0 THEN GOTO ...

1050 IF OP$="BEQ" THEN IF Z<>0 THEN GOTO ...

1060 IF OP$="BIT" THEN RES=(A AND MEM): GOSUB 100: RES=MEM: GOSUB

10: GOSUB 110

1070 IF OP$="BMI" THEN IF N<>0 THEN GOTO ...

1080 IF OP$="BNE" THEN IF Z=0 THEN GOTO ...

1090 IF OP$="BPL" THEN IF N=0 THEN GOTO ...

1100 IF OP$="BVC" THEN IF V=0 THEN GOTO ...

1110 IF OP$="BVS” THEN IF V<>0 THEN GOTO ...

1120 IF OP$="CLC" THEN C=0

1130 IF OP$="CLV" THEN V=0

1140 IF OP$="CMP” THEN RES=A-MEM: GOSUB 70

1150 IF OP$="CPX" THEN RES=X-MEM: GOSUB 70

1160 IF OP$="CPY" THEN RES=Y-MEM: GOSUB 70

1170 IF OP$="DEC” THEN RES=MEM-1: GOSUB 100: MEM=RES
1180 IF OP$="DEX" THEN RES=X-1: GOSUB 100: X=RES

1190 IF OP$="DEY" THEN RES=Y-1: GOSUB 100: Y=RES

1200 IF OP$="INC" THEN RES=MEM+1: GOSUB 100: MEM=RES
1210 IF OP$="INX" THEN RES=X+1: GOSUB 100: X=RES

1220 IF OP$="INY" THEN RES=Y+1: GOSUB 100: Y=RES

1230 IF OP$="JMP" THEN GOTO ...

1240 IF OP$="JSR” THEN GOSUB ...

1250 IF OP$="LDA” THEN RES=MEM: GOSUB 100: A=RES

1260 IF OP$="LDX" THEN RES=MEM: GOSUB 100: X=RES

1270 IF OP$="LDY" THEN RES=MEM: GOSUB 100: Y=RES

1280 IF OP$="LSR” THEN RES=MEM/2: GOSUB 90: MEM=RES
1290 IF OP$="NOP"” THEN REM

1300 IF OP$="ORA” THEN RES=(A OR MEM): GOSUB 100: A=RES
1310 IF OP$="ROL" THEN RES=MEM*2+C: GOSUB 40: MEM=RES
1320 IF OP$="ROR" THEN RES=MEM/2+(C*128): GOSUB 90: MEM=RES
1330 IF OP$="RTS” THEN RETURN

1340 IF OP$="SBC" THEN RES=A-(MEM+(1-C)): GOSUB 60: A=RES
1350 IF OP$="SEC" THEN C=1

1360 IF OP$="STA" THEN MEM=A

1370 IF OP$="STX" THEN MEM=X

1380 IF OP$="STY" THEN MEM=Y

1400 IF OP$="TAX" THEN RES=A: GOSUB 100: X=RES

1410 IF OP$="TAY"” THEN RES=A: GOSUB 100: Y=RES

1420 IF OP$="TXA" THEN RES=X: GOSUB 100: A=RES

1430 IF OP$="TYA" THEN RES=Y: GOSUB 100: A=RES

14

'S

1%}‘ &

w, @

L 4

Most of these are simple enough to follow, even if the BASIC code which
represents them is somewhat tortuous. (it also gives you some idea of how much
work the processor does even on the ‘simple’ instructions!). There are, of course,
a few confusions:

ADC — remember that the 6502 has no simple addition — it always does an ‘add
with carry’, hence the importance to clear the carry before most additions.

BIT — probably the most confusing of all the 6502 opcodes. It first does a logical

‘and’ between A and MEM, setting the Z flag accordingly; it then copies bits 7 and
6 of MEM into the N and V flags respéctively (overwriting the setting of N from the
previous GOSUB 100); and throws the rest of the result of these operations away,
saving only the settings of these three flag bits as a result of the operation. The
instruction is used mostly as a flag test, particularly with I/O devices like the 6821
PIA and 6850 ACIA that are used variously in the OSI systems; it also allows you to
keep up to three flag-bits in the same byte (if you can keep track of them!).

CMP, CPX, CPY — note that, like BIT, these only set flags; they throw away the
actual result of the operation, leaving the registers’ contents intact. Because to
this, the compare and BIT opcodes are sometimes used to ‘conceal’ another
instruction, as was described in the discussion on the input routine in the first
part of this series.

ROL, ROR — remember that these are rotates, not simple shifts, with the ‘ninth’
bit held in the carry. In ROL the carry is rotated into bit-0 (hence the simple
addition), while in ROR it is rotated into bit-7 — hence the addition of C*128,
C*217.

SBC — note that, as with ADC, the 6502 cannot do a simple subtraction; it can only
do one with carry, or rather ‘borrow’. The inverse of the carry is used ((1-C) in the
statement) — hence the carry must be set with SEC before a simple subtraction.
The remaining instructions not in the table above can cause even more confusion
— hence the reason for leaving them out. The machine-code ‘exclusive-OR’ EOR
instruction can’t be described by a simple one-line statement — as you’ll see if
you look up what an exclusive-OR actually involves. Each bit of MEM has to be
checked separately against the respective bitin A, calling for a fairly complex FOR
... NEXT loop. The other ‘missing’ instructions fall into three groups: the interrupt

" handlers BRK, CLI, RTI and SEl; the decimal-mode pair CLD and SED; and the

stack group PHA, PHP, PLA, PLP, TSX and TXS.

BRK pertorms much the same action as STOP in BASIC, except that its method
of working needs specific set-up routines before it will work (as opposed to
hanging-up the system); in fact it acts exactly like a software-controlled version of
an interrupt, and is only distinguishable from the IRQ hardware interrupt by
setting the B flag-bit (bit-4) in the status register. There is no easy way to simulate
the other interrupt instructions, except perhaps with the WAIT statement in
BASIC.

The 6502’s decimal-mode addition and subtraction is not something to be
recommended without some experience, since out of the variety of arithmetical
instructions available on the 6502, only ADC and SBC are affected by it — the
rotates, shifts and logical operations are not. When the Decimal-mode flag (bit-3
of the status register) is set by a SED instruction, all addition and subtraction is
done in BCD or binary-coded decimal form: a result greater than 9 in any nibble
generates a further +6 addition, to correct the result to binary format (e.g.

15

$B+%$6=%11, the correct BCD representation of decimal 11), and the reverse
applies to values less than 0, where a further —6 subtraction takes place. As you
can imagine, this produces decidedly scrambled results if the decimal-mode is
applied in the wrong place, such as working with ASCll-coded text ... beware!
The last group, the stack operations, can be simulated to some extent in BASIC;

¢ i
o
but not really adequately, as the 6502 uses its single hardware stack to perform © - Q

two separate functions. One is the temporary storing of registers’ contents and
the like, to protect them from being changed during some subroutine; the other
is saving subroutine return addresses, something we cannot simulate at all in
OSlI’s BASIC. We can simulate the stack itself quite simply: define an array called
STACK(S), with a pointer variable called S. In the 6502, the stack pointer goes
downward with increasing ‘pushes’; so to start we set S at a fairly high level — say
40 locations — with X=40: S=X (the BASIC equivalent of LDX #$28, TXS, the
standard SYNMON/CEGMON set-up value), and do an S=S-1 before each ‘push’,
or S=S+1 after each ‘pull’ — making sure that S never exceeds 0 at the bottom
end or the dimension of the STACK(S) array at the top:

1440 IF OP$="PLA” THEN RES=STACK(S): GOSUB 100: S=S+1: A=RES
1450 IF OP$="PHA"” THEN S=S-1: STACK(S)=A

1460 IF OP$="TSX" THEN RES=S: GOSUB 100: X=RES

1470 IF OP$="TXS" THEN S=X

PHP and PLP, which save and restore the processor status register respectively,
would need to be simulated by a FOR ... NEXT loop converting the contents of the
registers into a single combined value, and restoring them in the same order.
The difficulty with this simple-looking approach is that it conceals a trap:
‘pushing’ A within a subroutine, and trying to ‘pull’ it after returning from the
subroutine will result in chaos. The processor would try to ‘return’ to an address
made up of the saved contents of A as the low-order address, the former
low-order byte as the high-order part of the address, and the former high-order
byte (in the unlikely event of recovery) masquerading as the former contents of A.
To get round this, and to illustrate the problem, we need to change our earlier
and simpler definitions of JSR and RTS:
1250 IF OP$="JSR" THEN S=S-2: GOSUB ...
1340 IF OP$="RTS” THEN S=S+2: RETURN

BASIC will tell us very quickly, in the form of a ‘?BS ERROR’, if we exceed the
limits of our software stack.

This roughly sums up the functions of the opcodes of the 6502. At first sight, it
seems very limited, and a long way from BASIC — but that should illustrate partly
the flexibility of low-level languages, and also the amount of work that went into
writing your BASIC! By comparison even with other processors like the Z-80, for
example, the opcodes may well seem very restricted. But the advantage of these
simple opcodes is that they are simple; and the real power of a processor lies not
justin its instruction set, but the way in which it can use it to work on memory —
its addressing modes. By comparison with the Z-80, and particularly the 6800, the
6502 has a much richer set of memory modes. They are also extremely fast — the
indirect-indexed mode, one of the most powerful of the set, will load the A
register in a mere 2 clock cycles, compared to 23 for the nearest equivalent on the
Z-80, while the 6800 has nothing like it at all. But the addressing modes — the
means by which we arrive at loading the variable we’ve called MEM in the list
above — can be very tortuous indeed: and that’s what we will deal with in the
next part of this series.

16

&):r&

5y

¥)

Make your computer communicate
Richard Flen

The idea of the Computer Bulletin Board Service (CBBS) is tinally catching on in
the UK, and about time too. The idea is simple: vou equip vourselt with a terminal
(or make a computer pretend to be one), a modem, a telephone, and vou can dial
up a CBBS and access teletext-type data, <oftware, articles, information and the
like. The telephone we can take for granted: the other parts of the chain take a bit
of thinking about.

The modem

A modem is a device which enables vour computerterminal to be connected to a
telephone so as to be able to send or receive data. Although itis theoretically tand
practically) possible to hook up your cassette intertace to the phone line via an

acoustic coupler (a device with a microphone and loudspeaker which squirts the
cassette data tones into your telephone handset), this system has severe
limitations. The main problem is that while you could talk to other OSEmachines
and UK101s, you would not be able to talk to PETs, Apples and the like: this makes
your communication a little limited, although it might be usetul for starters. More
useful is to have a device which produces standard tones which are recognised all
over the world, and at a standard baud rate which most people can utilise. Such a
standard exists in the United States: the Bell standard, and many modems
available there (and no doubt imported into the UK) use this standard. The usual
baud rate is 300 baud, which suits the vast majority of systems. The usual form ot a
modem is a device which attaches to the computer via an RS232C serial link (or
sometimes a parallel port), taking the data signals and converting them into a
series of tones to the Bell standard at 300 baud.

The tones are then sent down the line cither via an acoustic coupler (usually
part of the modem unit) or a transtormer straight on to the phone line. It is
important to note here that British Télecom do not like you attaching strange
devices to the telephone line, and all such devices require type approval. The
penalty for not observing this requirement is twofold: you risk damaging BI's
equipment (for which they will detest you forever); alternatively, they might visit
you one day and rip out your modem just like they do illegal extension ‘phones.
However, there are devices which have BT type approval, and you will see them
advertised from time to time. Many modems have a large range of facilities, the
most expensive offering such things as automatic dialling. Such expensive
complexities are fine if you have the time and the money to find them. But
whatever type you obtain, this solves your first problem: attaching your system to
the ‘phone line in such a way as to be able to talk to other machines in an agreed
standard fashion.

The terminal

The second problem is exactly what you attach to the modem, and what it has to
do. In its simplest form, all you need is a terminal which can operate at 300 baud
into your modem. Most of us, however, want a little more: namely, some form of
intelligence, and storage capability. 1t is a little tedious to copy some kind of
program off the screen of a terminal and into your machine, when your machine
could do it by itself just as well! So what we need is some way of making our
computers into ‘intelligent terminals’. At least one US manufacturer, Micro-
Interface, offers software to do this for the Superboard: its ROMTERM software
(in two versions, for Series 11 Superboard and for disk-based systems) is being

marketed as StarLink by Mutek. This software makes vour system largely

17

compatible with many of the CBBS in the States, and no doubt British systems
(including our own, about which more later) will be organised along similar lines,
with similar protocols. The other alternative is to write it yourself.

Terminal software

Before designing software of our own, we should define what we expect it to do.
At the basic level, the system should be able to allow typing at the keyboard to be
sent down the line, either displaying the text on the screen as it is typed
(half-duplex) or displaying the text as it is ‘echoed’ back by the machine at the
other end (full duplex). As different systems and modems use one or the other,
our software should be able to handle both; this is simply a matter of printing the
character as it is sent for half-duplex, or not for full duplex operation. It may be
useful to be able to alter the baud rate: although 300 is normal, you may
encounter other speeds. The 6850 ACIA in OSI gear enables the baud rate to be
software-determined to a fair extent.

The system must also be able to receive data from the CBBS computer, even if it
responds while you are typing (if you are running full duplex it will certainly have
to do this!). There are two basic approaches to this: either your software must
look at the ACIA ‘between’ characters from the keyboard to see if something is
coming in, as part of the main routine (this can be sluggish, as most of the time
nothing will be happening; although in machine-code it is not too great a
problem); or you can make use of the fact that the ACIA has an interrupt handler
which can be hooked up to divert the computer into a ‘receive’ routine when
necessary. We will consider this approach here, as itis quite easy and gives you a
chance to try out those rusty interrupt vectors!

As well as talking and listening, the system should be able to download a
program from the CBBS machine, store it in memory or on disk/cassette, and
recover it later. This is more complex than simply what we might call ‘CB Mode’
and we will not consider it in this article. For disk users, a good place to start is by
using the Indirect File system to get the downloaded program ‘out of the way” as
an ASCII file in memory so that you can call it into the workspace and save it later
at your leisure. ROMTERM also does this for non-disk-based C1 users and the
concept is quite straightforward.

Another feature of our software could be to allow the machine to send your
own programs to the CBBS machine for other users. If it can’t do this, you will
have to rely on software supplied by the CBBS itself, thus neglecting one aspect of
the system which is most fascinating: that of exchanging programs. But, for now,
we will hold a discussion of this over for a later article.

A starting point

We will now consider a minimal system which we can use as the basis of a more
complex CBBS communicator. Hopefully some readers will be able to expand on
this in later issues (hint!). The basis of this approach is taken from a useful article
in the excellent American computer magazine, Microcomputing. In their May
1981 issue (p.208), James C. Daly describes the basis of a terminal routine for the
C1, and his article (and the magazine in general) can be heartily recommended.
Interrupts

The central part of this approach revolves about the use of the IRQ (Interrupt
ReQuest) facility of the 6502, and the fact that the 6850 ACIA has an interrupt
handling facility which can be used to force the computer to ‘listen’ when data is
trying to come in. There are in fact two interrupts on the 6502: the IRQ, which can
be screened off and ignored by the processor if desired, and the NMI (Non
Maskable Interrupt) which can’t. The latter is generally used in large systems to

18

~

call up an emergency routine in the event of a power failure. A sensor is used to
detect a nasty on the mains (eg it is disappearing or fluctuating in disturbing
ways). When this sensor operates, it holds a line low, which is connected to the
NMI pin on the processor. The NMI cannot be ignored, and tells the processor to
stop what it is doing and vanish off to some predetermined location (the NMI
Vector tells it where to go to: in our machines it is usually sent to $0130) where it
finds a special interrupt routine or program which generally saves the important
aspects of the main program in, say, memory which has battery backup, thus
enabling you to continue from more or less where you left off when the power
has returned.

The IRQ is similar in concept, in that when activated it forces a jump (usually to
$01C0 in our machines) at which location it is told what to do. The difference is
that one of the processor flags (the Interrupt Mask flag 1, conveniently enough)
tells the processor whether it is to go off and service the interrupt or ignore it
altogether. When this flag is cleared (with the CLIinstruction), the processor will
service an Interrupt ReQuest when it sees one. When it is set (with the SEI
instruction), the processor ignores any IRQs that might be presented to its hot
little pin. You will notice that this flag works in perhaps the opposite way to
that which you'd expect: this is because itis really an interrupt mask iiag: when
the flag is set, an interruptis masked, ie ignored. For this reason, the NMEis a Non
Maskable Interrupt: in other words, the processor cannot ignore it, however
boring and tedious the 6502°s silicon intelligence might find the interrupt routine
(if you'll pardon my anthopomorphism). Here endeth the tutorial on interrupts.

A little hardware mod

Before going any further, we need to perform a little hardware moditication. But
before you run away in disgust, | should tell you that all that is required at the
minimum is a single piece of wire. You don’t even need a soldering iron unless
you feel like it.

When data is received by the ACIA, it sends its interrupt request pin (pin 7)
down to ground potential. Normally this is meaningless to OSEmachines because
pin 7 doesn’t go anywhere. Take a suitable piece of wire and connect pin 7 of the
ACIA to the IRQ pin (pin 4) of the 6502, You can do this either by stuffing the ends
of the wire into the IC socket next to the correct pin, or you can solder it via a
switch to the underside of the board. Note that however you do it you should be
able to remove the wire or disable the interrupt line (with the switch) when you
don’t need the facility. Otherwise strange things may start to happen when you
are trying to load programs from cassette. For Superboard or C1 users, you may
find it useful to push the wire from pin 7 of the ACIA (U14) into pin 1 of J1, the
expansion connector. This pin carries the IRQ line to the processor with no
unpleasant bending.

Apart from implementing the RS232 port on your machine it it isn’t alrcady
there, this is all the hardware modification that you need to do for this
application. It is worth noting here that while the RS232C standard states that the
serial data should swing between about +5v (logic '1') and —9v (logic '0'), some
modems only require the logic ‘0" voltage to drop to zero, and not to =9v. If this is
the case with your modem, you will not need to implement the negative supply
rail on the RS232 interface: it can be grounded instead. This may save you extra
bits of power supply.

The program

This basic program is in machine code (no pun intended: | mean ‘basic” in the
sense of ‘ready to be expanded upon’) as the interrupt mask is difficult (otherwise
known as ‘impossible’) to handle from BASIC, although you could use a BASIC

19

driver program to get you into it, either using a USR(X) to call the program from
BASIC, or by executing a CALL to the start of the main routine if you have the new
BASIC 1 chip. It is simplest, of course, simply to load it and execute it with the ‘G’
command from the monitor (or ‘GO’ from the DOS kernel). It is written in
assembly language to give you practice with that funny tape you bought the other
week called the Assembler, or that weird DOS command called ASM. More
importantly, assembling it yourself not only gives you practice (itis small, and can
even be hand-assembled) but also means that you can stuff it into memory
anywhere you like.

The program has two parts. One sets up the ACIA, gets a character from the
keyboard, and throws it out of the ACIA, while the other is a program called by
the interrupt, which gets a character from the ACIA and displays it, checking to
see that there are none left before returning to the input routine. You will note
that the latter program section has an RTI instruction at the end: this tells the
computer simply to ReTurn from Interrupt servicing — it’s rather like a special
kind of RTS, which returns from a special kind of subroutine which has a
hardware-forced interrupt instead of a software-commanded JSR.

The two programs may be described like this:

‘Send’ routine

1. Clear interrupt mask on processor

2. Reset ACIA

3. Setup ACIA for desired baud rate, define word length and parity, and enable
ACIA interrupt

Get character from keyboard

Save character on the stack

Read ACIA status register: wait until transmit data register is empty

Pull character off the stack

Send character to ACIA

9. For half-duplex, display character on screen (omit this step for full duplex)
10. GOTO step 3

‘Receive’ (interrupt) routine

Disable processor interrupt (set the flag)

Save registers on the stack (so the status of the ‘send’ program isn’t lost)
Get character from ACIA

Display character on screen

IF there are more characters to come, then GOTO step 3. ELSE continue
Pull registers off the stack (ready to return to ‘send’ routine)

Enable processor interrupt (clear the flag)

Return to ‘send’ routine

A point should be made about step 3 of the ‘send’ routine. The 6850 ACIA can
support a number of different baud rates, via a programmable on-chip divider,
and can also send and receive data with different numbers of bits/word, stop bits,
and types of parity. The standard for OSlI is 8 bits word length, no parity and two
stop bits, and 300 baud is achieved by dividing the clock by 16. This specification
is achieved by stuffing $91 into the ACIA’s Control Register. To give a 300 baud
output and interrupt enable, this and other combinations are given below:

e NG A

SNoUhWN =

20

Contents (hex) Word length (bits) Stop bits Parity
81 7 2 even
85 7 2 odd
89 7 1 even
8D 7 1 odd
91 8 2 none
95 8 1 none
99 8 1 even
9D 8 1 odd

The 6850 has two memory addresses: the lower of the two is the address to which
the Control Register is written, and where the processor can read the Status
Register, which tells it whether there are other characters' to send or receive;
while the higher of the two addresses is the data register which may be written to
(for sending) or read from (for receiving). The ACIA is located at $F000/$F001
(standard CT1 and UK101) or $FCO0/$FCOT (C2, C4 etc); non-standard format
monitors may have them placed elsewhere. These addresses should be inserted
into the routines as appropriate.

Send routine

10 *=$(start location)
20 ACIA=$F000 ; $FCO00 for C2 etc (ACIA address)
30 START CLl ; Clear interrupt mask
40 LDA #$03
50 STA ACIA ; Reset ACIA)
60 NEWCHR LDA #%91 ; Set up for 300 baud, OSI standard (change if required)
70 STA ACIA ; and enable interrupt
80 GETCHR JSR $FFEB ; Get character from monitor keyboard routine
90 PHA ; Save character on stack
100 CHECK LDA ACIA ; Get ACIA status
110 LSR A ; Check bit 1 of status register,
120 LSR A ; if clear,
130 BCC CHECK ; try again (check last char has been sent)
140 PLA ; Get character from stack
150 STA ACIA+1 ; Send character to ACIA
160 JSR $FFEE ; Display char (half-duplex only) via output vector
170 JMP NEWCHR ; Do it all again

Receive (interrupt) routine

180 RECV SEI Set interrupt mask

190 PHA
200 TXA ; Save processor registers on stack
210 PHA
220 TYA
230 PHA

240 NEXT LDA ACIA+1 ; Get character from ACIA

250 JSR $FFEE ; Display character via output vector
260 LDA ACIA ; Read ACIA status

270 LSR A ; If status bit zero=1, (i.e. more to come)
280 BCS NEXT ; then get another character

290 PLA ; Otherwise, restore registers

300 TAY ; by pulling

310 PLA ; off the stack

320 TAX ; and transferring

330 PLA ; where necessary

340 CLI ; Enable processor interrupt again
350 RTI ; Return to ‘send’ routine

360 5

370 *=$01C0 ; System interrupt vector

380 IRQVEC JMP RECV Set up IRQ jump to ‘Receive’ routine

21

Note that this program utilises two monitor routines: the keyboard routine
(accessed via $FFEB) and the display driver (accessed via the output vector at
$FFEE). The use of an interrupt routine for received data means that the normal
keyboard routine (‘wait until a key is pressed’) will not cause loss of data as an
!ntertr'upt can bring in received data even while the keyboard routine is waiting for
input!

What you can do now

Implementation of the above routines (added to if necessary) plus the required
hardware can bring Kou all the benefits of CBBS access, if you can find one to use,
oradirect line to other users. As it makes your machine pretend to be a terminal,
you should even be able to access a CBBS designed for other machines with this
program — the programs on such a system may be of little use to you however!
To remedy the problem, we are considering starting up a User Group CBBS, using
a multi-user C3 and a handful of telephone lines. We'll keep you informed as the
system develops. There is still a good deal to be done to get such a system ‘on the
air’. The database of interesting information is one problem, but a more
immediate one is to define protocols which will suit the majority of users. The
system will need to be able to ask what machine is in use and set itself up
accordingly to send ‘pages’ of the right screen size, with the right formatting
commands to suit C1s of both types, UK101s, serial systems and C4s, and will have
to send out, for example, the right screen-clear commands to suit different screen
handlers (eg CEGMON). This will take a great deal of time and effort, and
anything readers have to suggest on all aspects of the system will be welcomed. At
the moment we envisage some kind of password and identification ‘logging in’
system, which will recognise User Group members and give preferential rates for
access (obviously the thing will have to pay for itself), but it is early days yet. Quite
obviously, CBBS are the systems of the future, and we expect the system to
develop as time goes by. In these early days, however, we need as much help with
ideas as possible, to provide another service to User Group members.

REVIEWS

Expansion board from Elcomp

New from Elcomp is an expansion board with a difference: it plugs into the 40-way
expansion socket on a Superboard or UK101 and provides on $-44 card slot and,
wait for it ... four Apple-type 50-pin slots. While you can’t use Apple cards which
rely on dynamic RAM refresh, the Apple monitor, or the language card system,
there are still a large number of boards which can be used. Elcomp also offer a
range of Apple-style cards for prototyping, /0O, EPROM programming, EPROM:s,
12-bit A/D, sound generation, and other purposes. As is typical of Elcomp, the
prices are not incredibly cheap. The Elcomp-1 expansion board (order number
606) costs $49.00 for the double-sided PCB and instructions only — you still have
to buy the components. Elcomp can be contacted in Europe at PO Box 75437,
D-8000 Munchen 75, West Germany.

22

Word Wizard, Codekit and BASIC 5

These three programs are some of the many utilities currently marketed by
,Premier Publications. Word Wizard is a machine code word processor, Codekit is
a single line assembler/disassembler, and BASIC 5 is an extension to BASIC
providin% 17 new commands. Premier Publications’ software is designed
principally for the UK101, but versions for the Superboard and other OSI
machines BASICs are available from them.

Word Wizard

Many of our members aspire to have a good word processor to run on their
machines. Almost certainly they neither want nor need the business type, mostly
used to write the canned letters that the AA and other organisations send you.
They (our members that is) also have to contend with a limited amount of
memory, so programs with unnecessary features simply reduce the amount of
text space left for you to use. The Word Wizard, written by N. Davies, neatly fills
this gap.

ToguFS)e this program you load your text from tape or type it in, only using the
return key to terminate a line when this is necessary for the text format, for
example at the end of a paragraph. The program uses its own keyboard routine,
so the vices of SYNMON (if you are still running it) do not have to be contended
with. At any time the cursor may be moved back non-destructively to any point,
and text may be inserted or deleted at that point. The cursor may then be moved
forward or moved directly to the start of text using one key stroke. A very good
feature of this word processor is that the screen can scroll both ways, either on a
line by line or on a page by page basis, so that the screen acts as a true window on
memory. To help format your text, right margin justification of a line, and
centering of a line are achieved by typing the appropriate control code in front of
the line concerned, while Tab, Space and end of page functions are also
provided.

Blocks of text can be moved or copied from one place to another, and a global
search and replace function allows you to search for a string of up to 48 characters
and replace it, if desired, with another. This allows you to use shorthand codes for
frequently occurring phrases or words, aids you to correct spelling errors and the
like. | have also found it very useful in writing BASIC programs, as the program
can be heavily compressed, relieving one of much of the typing, and helping to
ensure correct syntax, getting the PRINT statements to line up etc.

At any time, the text can be stored on cassette, and when required output to a
printer complete or from the cursor position. The processor will format the
output on printing, and even justifies the right hand margin of the text to the
desired width by adding extra spaces unobtrusively in the line. These functions
make no demands on the printer used, but a facility is provided to pass control
codes to the printer if required. :

Codekit

This is a very useful program to help those of you interested in machine code. The
program, which is entirely relocatable within the memory map, includes a single
line assembler which allows you to write machine code in mnemonic form instead
of having to convert to hex, although as it only works on one line, labels cannot
be supported in the same way as a ‘standard’ assembler. Operands can be stated
in either hexadecimal, decimal, binary or ASCII form, and branches require either
the absolute destination address or its displacement from the branch as an
operand.

23

A dlsassembler_is also provided, which either decodes seven lines of acode ata
gulp for screen viewing, or will disassemble a complete block for output to the
RS232 port for printout. A facility exists for moving blocks of code by 127 bytes in
either direction, so that you can make room for those extra bytes that proved
necessary. Although the assembler has limitations for extensive machine code\x
work, Codekit is a useful way of creating relatively small machine code routines .
linking into BASIC via the USR command. As Codekit is compatible with BASIC
you can move from one to the other without having to resort to cold starts and
possible program loss. As Codekit is only 2Kbytes long, enough workspace is left
to make this a practical proposition on an 8K machine.

B;;\SIC 5
This program, written by P. Rihan, is a 2 Kbyte extension t ! i
Microsoft BASIC and is available to work with gitther ROM or d?sl?gl'l\gléirs;?git?af
commands are provided in addition to all the usual ones, and the extension is
done so that BASIC is not substantially slowed down and the stack’s integrity is
preserved. This means that there are no limitations as to the use of the new
commands (certain methods of extending BASIC can run into trouble if the new
commands are placed in a FOR ... NEXT loop or a GOSUB) and the appropriate
E:vsvlfcui"tqr mes:ﬁgtiis generated shcauld an error occur within routines using the
ctions. € new comman i i ‘& ivi

into three cmegorior s are prefixed with an ‘&’ and are divided
Ge(':neril commands

ETkey — this much needed command is non-halting a
characters from the keyboard, returning a null if no keygis n:iegsllé):s ekl

GO xxxx jumps to a machine code subroutine at xxxx which address may be

engress%dclg decimal or in hexadecimal (at last!).

an are commands which allow you t i
useful in menu selections and the like. youto GOTO or GOSUB a variable, very
valr(i[a)gl);<\>//;‘°\RR' will read down xx DATA statements and put the next item into the

INAT and PUTAT allow the input and printing of a string of given length (the
string is truncated if an overflow occurs), from any position on the screen that
input statements can be executed without messing up graphics.

Formatting ‘

A PRINT USING command is provided with its associated image command. This
allows extensive formatting of text fields to both screen and printer, it will also
truncate numbers or text, align decimal points etc. ’

Wl and CWI are for CEGMON users and will allow them to set up and change
screen windows anywhere in memory. Decimal or hex arguments are permitted
in this most useful feature.

Graphics commands

SCR will fill the screen with any character — fast.

BLK will draw a block of any character on screen — also fast.

ScVLIN and HLIN will draw horizontal or vertical lines of any character on the
reen.

th SET and TEST allow you to put a character on the screen or to find out what is
ere.

All the screen based commands use row and column arguments with the origin
set at the bottom left hand corner to set the screen locations and are fully error

trgpged so that you can only write in the area defined by the current screen
window.

The above brief description of the functions of BASIC 5 will, | hope, give the
reader some impression of the dramatic extent to which the problems relating to
formatting input and output in BASIC have been resolved.

All the above programs are sold br Premier Publications on cassette, disk or in
EPROM. In EPROM they are available on switch on, of course, and form part of
Premier’s TES system. The instructions as to their use are adequate, and give
examples of each command, and Premier have learned a reputation for being
helpful to any client who has difficulty in using any of their products.

Premier Publications’ BASIC 4
Reviewed by Richard Elen

No sooner have Premier released P. Rihan’s BASIC 5 to the world than they come
up with yet another goodie! Premier are fast establishing themselves as the best
source of utility software and firmware for our machines, and BASIC 4 represents
another string to their bow.

Primarily by throwing away ROM BASIC’s announcement messages and a few
bits of redundant code, BASIC 4 is able to offer a full set of commands for SAVEing
and LOADing programs at a greater speed than normal, and with file names if
desired. The speed enhancement is obtained by using a method of saving the
bytes directly, rather than LISTing the program in ASCII form onto cassette. Time
savings of up to 33% can be obtained by this approach, which is similar to that
used by the PET and other machines. The original SAVE and LOAD commands are
retained, so as to provide compatibility with existing tapes and other, less
fortunate users; the only disadvantage of the byte-load format being that
‘automatic merging’ of programs is no longer possible. To do this you still have to
have your programs recorded in the normal way. BASIC 4 additionally incorpo-
rates an indispensible “crash-recovery’ command, OLD, which allows you to
cold-start and recover program pointers if you've inadvertently POKEd vital bits of
BASIC’s page-zero locations.

Installation

It is very easy to fit BASIC 4 into your machine: normally you will have a ROM in
the appropriate hole in your board, but if you've already replaced BASIC 1 and 3
with unmasked versions with CALL and a ‘fixed’ garbage-collector respectively,
the procedure will be well known to you. You simply bend out pins 18, 20 and 21
of the new BASIC 4 EPROM, fit it into the BASIC 4 socket on your board, and
connect up the pins, pin 18 going to ground, pin 21 to +5v, and (on a Superboard)
pin 20 to IC 17 pin 4. The whole process takes a few minutes at the most.

Powering up

On powering up and cold-starting, the familiar ‘Memory Size?’ prompt appears. It
is at this point that you type OLD if you are trying to recover a program.
Answering in the normal way drops you straight into BASIC: ‘Terminal Width’ and
the BASIC start-up message have been absorbed to provide room for the code. Of
course, POKE 15 still changes the terminal width, which is probably how you did it
anyway, and of course, you leave it alone if you have CEGMON (the operating
instructions kindly point this out). At this point you are now in for a surprise:
24 BASIC 4 supports Rihan’s BASIC 5, and if you have it it resident, any key pressed

25

after cold-start will produce the ‘Ready’ prompt instead of the original ‘OK’,
telling you that BASIC 5 has been initialised. :

Once in action, BASIC 4 primarily adds a new set of SAVE and LOAD
commands. These are as follows:

SAVE is simply the normal command for saving to tape: there is no change in
any respect to the normal. SAVE “filename” saves a program in byte-format with
the specified filename. LIST is not used, and the pro§ram is not displayed on
screen. The BASIC prompt announces the completion of the operation. SAVE” (no
filename and no closing quotes) saves a program in byte-format without a file
name: in other words you can’t get it back without the corresponding command
to load a byte-format tape without a filename (LOAD”). Premier describe this as a
useful way of preventing illegal use of a program, but | suspect that if you had
BASIC4 you would also know about LOAD” as well!

The simple command LOAD, once again, loads a program as normal: no
change. LOAD“filename” loads and auto-runs the program named. If other
filenames are encountered on the tape, their names will be displayed but they will
not be loaded. A loading error is indicated by the word BREAK and the BASIC
prompt. This command clears the workspace before loading. LOAD“filename
(note lack of closing quotes) clears the workspace and loads the named program
as above, but doesn’t auto-run it. Similar syntax applies to the LOAD”” command:
it loads the first program encountered and runs it. Missing out the second quotes
character loads, but doesn’t auto-run the first program found. Useful, both of
them, if you've forgotten the filename.

In fact, as the system loads and saves quite happily at any speed up to 4800 baud
(the highest | tried), you could end up with a tape full of programs and dozens of
filenames (each up to 32 characters) to be forgotten: a tape directory is a good
idea. | found a neat way of doing this, by typing LOAD“filename” where
“filename” is something non-existent. Running the tape then lists all the
filenames on the tape. If you note down counter readings at the same time, you
can then use CEGMON'’s screen editor to call the names off the screen into a
program whose line numbers are the corresponding tape-counter readings. For
example:

1 2“Directory for tape no. 2, Sept 04 1981”
7 2“FILE 1

11 2“FILE 2

... etc.

SAVE this program under the name ‘DIR’ (e.g. leave room for a big one at the
front of the tape), and then type LOAD”” before trying to find the program and up
comes the directory. This is very fast!

Another command which is most useful is LOAD?”. This is a ‘verify’ command
which compares a tape copy with the resident BASIC program, forcing a BREAK
and BASIC prompt to be printed in the event of a bad comparison.

The final, and very useful, command in BASIC 4 is OLD. This, typed in response
to ‘Memory Size’, resets BASIC’s pointers to look at a program which has been
accidentally lost by inveterate POKEing into page zero, tEe stack, or page 2. It will
not help you if you've overwritten the program in the workspace, of course! It is
worth noting, however, that occasionally a program will crash again when you try
to run it after recovering with reset, cold-start and OLD, so it is worth SAVEing it
first. Often this is the result of having a POKEd variable assuming an unexpected
value, so, of course, it will crash itself once again the next time you try. SAVEing
the program first allows you to take the extreme measure of a complete cold start
if something really odd has happened.

26

P

Conclusions

All in all, BASIC 4 is a worthwhile addition to a cassette-based machine. At a cost
of only £ , it will hardly break the bank. The added SAVE and LOAD'commands
are most useful and fast, especially at 4800 baud, and although the inevitable loss
of the ability to append programs in this mode is a pijty, it matters not because of
the continued existence of normal LOAD and SAVE. Indeed, | wonder if it might
be possible to write an append routine to patch it in: without looking into the
code more deeply | wouldn’t know. The routines in BASIC 4 are sensibly and
economically written, and use a severely limited space most effectively, providing
facilities which many users have been after for some time. | believe | also noticed
some clever diversions in the code to detect illegal copies, and there also appears
to be a unique chip ID in case anyone was selfish enough to try. The single A5
double-sided instruction sheet is concise and clearly understood, and the
installation instructions are quite sufficient. A useful product which fulfils a
long-unsatisfied need.

Premier Publications, 12 Kingscote Road, Addiscombe, Croydon, Surrey. Tel:
01-656 6156

One important point to note about BASIC 4 — and this isn’t in the manual — is
that it requires CEGMON to function. It does not include the old screen handler
at $BF2D (this, too, has been removed to make room for the new code), so it
requires CEGMON’s screen handler to operate at all. It should also be noted that,
as a result, machine code programs which start below $0235 must be relocated or
otherwise dealt with, as the OLDSCR location in CEGMON will not be able to call
$BF2D when the output vector is pointed at it, thus removing the capability of
running such routines unchanged under CEGMON. This fact is a nuisance and a
great pity, but understandable in view of the room needed for the new functions
in BASIC 4.

32x64 Display for Superboard II
J. R. Fornalski

The following article describes a method to obtain guard bands for the
Superboard II'and is an addition to the modification published in Vol.1 No.2.
However, we feel that it will be possible to implement it on computers with other
video modifications, including the new Series 2, with some extra circuitry. This
circuit is a distant relative to the one suggested by Dr. Abbott in Vol.1 No.4.

Note that throughout the article we are using ICxx to refer to a chip on the new
board, while those on the computer are referred to by Uxx, as in the circuit
diagrams.

27

How it works

This modification provides a continuous clock for the processor at the selected
frequency via U29, and stops the clock driving the counter chain during the
period of line blanking. Using a 12MHz crystal allows adequate guard bands for
the television, while providing a line frequency of 15,525.644 Hz. The clock to the
ACIA, which is derived from the counter chain, has a very small jitter which is
averaged by the ACIA’s divider, and the rate is now closer to 300 than it was
originally.

If the data blanking is high 1C2 is disabled by its RO line (See Fig 2). A negative
going edge from the line reference to U65/9 (C8) triggers 1C4 whose output is
gated with inverted load pulses to set the latch fromed by part of I1C5. This pulse
corresponds to the “65th.” character. The latch sets, making data blanking go low
and stops the clock to the counter chain while enabling 1C2. 1C2 produces a
travelling logic 0 at the outputs of 1C3, which is used to a) delay the line sync pulse
and b) generate the delay while overscan takes place. When this pulse reaches the
“line trigger” (fig.3, wire E) Ub5 generates the line sync pulse. The “travelling 0”
continues until the output selected by “line frequency adjust” (fig.4, wire D),
resets the latch (IC5). This resets data blanking to a high and restarts the counter
chain. The process then repeats.

Parts list 1 X 7492

2x7493

1X74154

2 X 7400

1x74LS121

1X12MHz Crystal

2n2 cap; 12KQresistor; matrix board, Vero pins etc.

LS versions of the above chips may be used, but check the pin-outs, especially for
the counters.

Build the circuit shown in fig.2. A suggested layout for a matrix board using
Vero-wire techniques (as used in several conversions) is shown in fig.3. It is
ts;:ggbesteg that vero-pins be used to facilitate access to the input/output points on

e board.

Initial modifications

Refer to fig.1. On the underside of the board, cut track ‘A’ near PTH A isolating
the processor clock line (to U8/37). Join track A to U30/14. This will run the
processor at 2MHz. Turn on the computer and check that all functions still work.
If they do not it is likely that either the RAM or EPROMs, rarely ROMs, have access
time problems. If this is the case, either weed out the offending devices and
exchange them, or settle for a clock speed of 1.5MHz or TMHz at which few
problems should occur.

Replace the crystal X1 for the 12MHz one. Remove the link from track A to
U30/14, and connect track A to U29 as follows:

speed join to comment

2MHz track A U29/8 use 7492 as U29

1.5MHz track A U29/11 join U29/2,3,10; use 7493 as U2°
1TMHz track A U29/13 join U29/8 to U29/14; use 7492 as U29

Check that the computer still works. The screen display will not make sense, but it
should be possible to see the screen clear when BREAK is pressed.

28

Connecting the new board
Refer to fig.4 and locate W9. Cut the link between points B and C. Note that point
C leads to the counter chain, at U30/2. Remove U65 (74L5123) from its socket,

bend out pin 9 and replace it.

join to (new board) comment

U65/9 (track) 1C4/3 line reference (C8)
fig.1, pt.A 1C1/14 Processor clock (20)
U65/9 (pin) 1C3/4 Line trigger (2MHz)
U65/9 (pin) 1C3/3 Line trigger (1.5MHz)
U65/9 (pin) 1C3/2 Line trigger (IMHz)
fig.4, pt.B 1C6/1 12MHz input

fig.4, pt.C 1C6/3 Gated 12MHz output
u42/1 1C5/4+5 Load pulses

All leads should be reasonably short in view of the frequencies involved. Check
the computer at this stage. A picture with 64 characters/line should be displayed
and the computer should operate normally. However, as blanking has not yet
been applied, certain characters may cause the picture to streak.

Blanking

Locate U59 (7420). It is necessary to cut the track leading to pin 12, which, as luck
would have it, is only accessible under the chip. The easiest solution is to cut pin
12 just above the surface of the board, bend it out and connect it to IC51/8 on the
new board. This completes the modification to the Superboard 1.

Adjustments
The timing on monostable I1C4 seems fairly flexible. For maximum symmetry (T3)
may need alteration. This is a selected output of U43.

The picture position may be shifted slightly by the “line trigger” wire E; the line
frequency is-affected by wire D.

It should be easy to adapt this modification to work with other video
conversions to the Superboard with little difficulty, although care will be needed
in the region of U29. Itis important that the cassette interface is driven from the
interrupted clock line, otherwise its rate will be incorrect. Owners of the Series 2
Superboards should be able to achieve 32x32 or 16(!) X64 by adapting it. The
majority of components on their machines are labelled as in the older versions, so
that most of the instructions will apply. Here are some points which will have to
be dealt with (these seem obvious but have not been tried out). If a 12MHz crystal
is used, the frequency doubler formed by U79/4, 5, 6, 8,9, 10 must be disabled.
W9 (fig. 1 points B and C) might be emulated by removing U79, bending out pin 8,
and re-inserting. U79/5 would then act as a source of the 12MHz clock and U79/8
socket would provide access to the top of the counter chain corresponding to
point C.

A divider would have to be added to provide the processor with uninterrupted

clock pulses.

The line trigger referred to is not labelled C8 but is still accessible at U65/9.

As U56 does not have spare inputs on this machine, spare gates on 1C6 could be
used to gate (T3) and DB, the inverted output being fed to U56/13.

29

F\'S).
Underside ©of RBoard.
% a2

¢ b 3—y2MHz v
Cr_ un 3
R T B W T
c..-.‘."
;_..-' * g
I2MHz—> 3 - -
n) i ack A PTH A KQSbmrd—
____o’” .
to us/37 \oo———o

x TF u2qis 7493 Link Plus.?,a,;o.

"“53;::?.‘"“5;

L —— >0 Data
Blanking
V24 \ U3Ol
e 12 MIH zk
Top of S oo
counter o J¢ Wq)
chain [Junused ,T Keﬂboam{
lu] oss]
F\S. 4

30

J4LS12) 74LS00 74L500

Roc Clock - ﬁom (96}251 f"”‘ 37

Cg- from track of U (o’5<pm Q> NDTE |

(oad- from U2 pin
Daka Rlank - ko U5k pin 12 poTe 2

Clock (Chawn - o WG NOTE 2

Miz - from WAQ ’

i\?&e Freguency Adjusk for 125 Ko/n N.OTé
Line Trtgger— Adjust Afor ce ntral Display poskio

Subsequent trials on modifying a Series 2 Superboard indicate that the
modification is not quite as straightforward as was first thought. A promising line
of research indicated that both screen formats should be possible if a
retriggerable monostable (74123) is used instead of the 74121 on the new board.
Would any member successfully modifying a Series 2 please supply us with
_details.

Readers should note that 1.5MHz operation will prove difficult with disks — the

data ACIA’s clock is derived from @2 and NMHz software only supports operation
at1,2or3.3MHz —Ed.

31

S ————————

bola

Soitware

117 BLENHEIM ROAD, DEAL , KENT
New Programs from DOLA SOFTWARE

Front Panel Program for UK 101

On meeting a breakﬁoint in your Machine Code program, our new Front Panel
program shows all the registers in Hex, Decimal, Binary and Character (as for a
POKE to the screen). Any of these can be changed by moving the cursor around. In
addition any part of the memory can be shown in the same format, and altered at
will. The program occupies 1.25K starting at 1B00, but a free BASIC program, used
in conjunction with the Extended Monitor, allows relocation. The program is
written for the New Monitor, but a CEGMON version is in preparation. Price £8.00
on cassette.

We also have a Text writer program for the UK 101 for both the New Monitor and
CEGMON. This does not pretend to be a word processor, but allows you to write
text, add and delete lines, print the text, save it on cassette and load it back for
modification. The program also solves the problem, which not everyone knows
about, of dropped characters when reading text from tape. This is due to the
garbage collector doing its thing while reading your data!

Price £3.00 for documented listing; add £2.00 for cassette.

The Dola Software library contains stand alone programs in BASIC and many
routines, often in Machine Code, that you build into your own programs. These
include graphics routines, PIA based programs including an accurate Frequency
Meter, AY-3-8910 music chip subroutines and programs and a very fast large digit
(7x5 pixel) screen display. There are also some original games.

The programs are written for the UK101 using the New Monitor, but for the
Superboard and CEGMON, only minor changes will be needed.

Send an SAE (large) for the catalogue.

For Sale.

C2-4P. 20K RAM. Cegmon. 2MHz. room for 12K more RAM on board. Manuals
and numerous tapes, chess, utility etc. £335.

Ring 070-682-6188 after 6pm (Lancashire)

NEW IMPROVED CHARACTER SET in EPROM for your UK 101/Superboard (please
state which). Includes a full set of Pixel graphics characters, maths, electronic,
gaming and other symbols.

Price £8.00 (+50p P & P) to User Group Members. Reprogramming service
available. Send SAE for more details or phone Harrogate 503276. J.O. Linton, 110
Ducy Road, Harrogate, HG1 2HB.

32

2 3

ab, o

PROGRAMMABLE SOUND GENERATOR — Velvet Software, bought as kit for £50,
put in case, stereo DIN socket, 3 channel select switches, 4 sofgtware-controlled
relays, 2 1/O parts, control signals available on 38-way edge connector. Connects
via 20-way cable and D-connector. FAULTY and wiring needs to be done on
C1/SUPERBOARD/UK101. Cost £65. Only £40.

N.A. Cannon. Tel. (0737) 65863.

BASIC5 for UK101 and OHIO

The most devastating enhancement yet, adding
17 new BASIC words to your interpreter which
can be used in program lines and give machine-
code respose speed to graphics and formatting

HLIN, VLIN, SCR, BLK, SET and TEST allow
generation and manipulation of graphics at
speeds which are unobtainable in BASIC

PRINTUSING, PRINTAT, INAT allow total control
of screen input/output

GET (key), RD (Read DATA), GS and GT (GOSUB
and GOTO a variable), GO and GO$ (GOTO a
machine-code routine) allow total program
flexibility

WI and CWI allow CEGMON users to manipulate
their screen under variable control, using one
command, in Hex or Decimal

BASIC 5 is available for CEGMON, SYNMON,

and MONO1/2 only. State precisely your compu-

ter and monitor when ordering. Comes com-
plete with comprehensive manual.

Available on DISK or in EPROM (9000hex) £19.95

BASIC4 cassette file handling system

This new EPROM for the UK101/OHIO provides a
comprehensive file-handling system, capable of
working at up to 4800 baud.

® named programs to cassette

® verify tape contents facility

® reliable high-speed save/load

® selectable auto-run of loaded BASIC
program

e crash recovery command (OLD)

® original SAVE/LOAD commands unaltered

e reduces LOAD/SAVE times

® seven new SAVE/LOAD commandse non-
destructive memory test

® initialises BASIC5 automatically if resident
BASIC4 is a plug-in replacement for your existing
BASIC4 ROM, PRICE £11.95

CEGMON — ONLY £25.87 inc

e
TOOLKIT 2 for UK101/OHIO v g

The most powerful TOOLKIT on the market,
TOOLKIT 2 gives you all the following facilities in
only one EPROM.

REPL exceptionally powerful Global Search and
Replace of BASIC listings.

DUPL copy a line into a new line

LIST/ controlled listing of program

FIND anything in a BASIC lsting

RENUM renumber from any start in any incre-
ment — full error messages, totally reliable.

AUTO generate new line numbers automatically,
any start, any increment.

DELETE high-speed block line delete.

VIEW examine cassette contents without loading
to memory.

TRACE superb trace feature — screen transpa-
rent. Can be turned on and off within a
program

MC enter the monitor quickly!

TOOLKIT 2 also lists the relevant line of BASIC

where any error occurs and cures the warm-start

‘OM ERROR’ bug.

Available ‘'n EPROM only (8000hex), for CEG-

MON, MONO 1/2, and SYNMON monitors

(DISK soon). Price £19.95. State machine and

monitor when ordering.

INVADERS

Quite simply the best machine-code game ever
written for the UK101/OHIO. PREMIER have
succeeded where others have failed. Our IN-
VADERS is faster than any version we have yet
seen, including Arcade machines. INVADERS
has all the features you expect, plus superb
graphics and two-player option. A firm favourite
with all our customers. NOW AVAILABLE for
CIE/CIU in addition to UK101.

PRICE £7.95

Also now available for 32 x 48 CEGMON-based
UK101 BASIC 1 or 5 machines is KAMIKAZE
INVADERS - a new slant on this popular game.
£5.95

All the above products (except CEGMON) are available only from Premier.
hone or write today for our extensive UK101/OHIO catalogue.

12 Kingscote Road, Addiscombe, Croydon, Surrey

from Premier *

01-656 6156

‘I SCOPYM a single disk copier

' SCOPYM provides a fast, foolproof method of
creating a new, useable disk from a Master. It
will copy the first fourteen tracks of a disk in
around 1.25 minutes. All copying is automatic.
SCOPYM provides a safe, simple and extremely
fast and efficient way of creating a new disk. It is
supplied complete with comprehensive notes.
tor 5.25" OS65D users only.

SOUND/V.LLA. BOARD

The TES Il VIA/SOUND kit gives you up to 56
Input/Output lines and progammable sound
generation. Inorder to allow you total flexibility
in designing your system, we are offering the kit
in low-cost packs.

I he Base Kit consists of PCB, connector, address
decoding and buffering, plus IC sockets.

Ihe Sound Pack consists of AY-3-8910 sound
chip, amplifier and components.

Ihe Via Pack consists of VIA and support.

BASE KIT £24.95 SOUND £11.95 VIA £9.95.

SPECIAL OFFERS

WORD WIZARD + MINI EPRON BOARD £29.95

IOOLKIT 2 + MINIEPROM BOARD £29.95
BASIC5 + MINI EPROM BOARD £29.95
CODEKIT + MINI EPROM BOARD £29.95

SOUND/VIA - Base, Sound and VIA kits ~ £43.95

CHRISTMAS GAMES PACK

Available for the UK101, Superboard, TRS80,
Video Genie, SHARP and Microtan, PREMIER's
Christmas Games Pack will entertain youngsters
and challenge adults. Super Santa, Reindeer
Roundup and Toboggan Run. Three-game pack
for only £7.95

COMPACT

This useful machine-code program provides
UK101/OHIO users with a utility that they have
been waiting for — a BASIC line compactor.
COMPACT looks at the resident BASIC program
and adds lines together wherever possible, thus
aiding running speed and saving memory space.
It is an extremely reliable way of compacting
your program. COMPACT lives at the top end of
your memory and will run with any monitor —
please state memory size when ordering. PRICE
£7.95

TES Il HARDWARE RANGE

product kit built
8K RAM BOARD £29.95 £39.95
8K EPROM BOARD £29.95 £39.95
8 Slot MOTHERBOARD + PSU £29.95 £39.95
JI BUFFER BOARD £19.95 £29.95
MINI EPROM/ROM BOARD £14.95 £20.95

SCREEN ENHANCEMENT KIT £55.95 £69.95

T

SPECIAL OFFERS

TOOLKIT 2 + MINI EPROM BOARD 29.95
BASIC 5 + MINI EPROM BOARD £29.95
CODEKIT + MINI EPROM BOARD £29.95

SOUND/VIA - Base, Sound and VIA kits ~ £43.95

PRINTERS from £175.00 upwards

Phone PREMIER for our best price on ANY
currently available printer.

KSR PRINTERS ONLY £175 inc VAT — a simple
two-wire connection to any UK101/OHIO. RING
FOR AVAILABILITY.

«Publications

POSTAGE AND PACKING

Software 60p per order, EPROMS/
DISKS 80p per order, HARDWARE
£1.50 per item. Maximum £3.00.

ALL PRICES INCLUDE V.A.T.

Planning Cards and Pads

A complete range of planning and programming aids from Wordsmiths. Laminated # "
A4 cards and 100-sheet pads, ready punched for a standard 2-ring binder, at a price

that's less than photocopying your own. Bring some order into your programming
notes and planning!

ASCII character set
R A S S S S S
0 oo
!
Number base conversions e
Decimal — hexadecimal — binary to 65535,, 2 - }
o oo s v e o o0 s o e 0 s 0 . 10]
R S T S A T T 3 - H
k] i3 %
L P 5 N
"o 4
6502 opcodes soo 8 i i ‘,v
- 2 o0 i H
- . 1 2 3 . 5 . 7 —.;‘ - 6 i , ! .
' o |7 om
Challenger graphics character set O | P I |
) harsctr st commigh OB St 1378 :
XXX wdbdi Tear ®am P | A | B
S T w e o e v ot e e N (Al | 0 TELYY PP i
¥ I . M ‘f 2
h f i -
- ' P O e R
o Ao [| ~
Programmer Dat . e !
X c f[swr || EREEE i
Tune Taddr. [M/code [uabel [source Code |Comments o Cnw |
o E £ e
- —t—— — [~ ’ 0o
— 1 1T E—— -l Fo {
I — - € " e
] B e e [+H
- — M P
E— —p————ts . 2 | | |=
] T] |-~) Tt !{
I] R _l : 1 | i I ‘[{ Hi
S — — i S | R IRRERARE: il
| - . S » ! b b |
) | |
— -] | A P AN
—— — — . I L %
o o e € I I \
- . s [FRETER I TR v T
1T 1 al g
B . .
— 1 o 2 o
= : [.
B I — o i y
] _— o » .
— e S — - J = 4
o,

Video (cards and pads) Superboard: 25%25, 32x48, 32x64. UK101: 16x48, 32x64.
C2/C4: 32x32, 32x64.

Programming (cards and pads) BASIC, Machine-code/Assembly language, Vari-
ables list, Labels list, Memory planner 1 (256 bytes), Memory planner 2 (2 x 128
bytes).

Reference (cards only) Hex/decimal/binary conversions to 65535,,, ASCII character \u';

set, Ohio graphics character set, 6502 opcodes (mnemonics and values). j

Cards65p each; pads 225p each, including VAT and postage (minimum order £3.00
please).

Wordsmiths West End, Street, Somerset BA16 0LQ

The Back Page Program

1V REM **BACK PAGE PROGRAM*x

2J REM

39 REM *x[WENTY WCESTIONS**

40 REM

50 REM Adapted from

6J REM "[ales of the Marvelous Machine",

K
ReM Creative Computing Press.

M by ltaylor and Green,

Y) RiM

139
(R
124
132
14.)
l')x)
169
17J
134
| 20
209
210
224
239
235
24
200
264
219
239
29
3N
3
324
334
344
3o
309
310
339
34
400

PRINT CHRS(Z25)stREM Clear screen
PRINI["Welcome to the gamne

PRINT"of Twenty Questions."
PRINIsPRINT"By askiny questions"
PRINI[Ywhich have YES or NO answers,"
PRINT"try to guess the npject
PRINI"I have in mind."

PRINT"Be sure to end each question®
PRINI"with 3 question mark."
PRINIEPRINI"A simple 27/ ends the orogram"sPRAINT
AS="AETOIY"3C0=9

CoO=CO+I

PRINLI"Your question numoer"3Co)
INPUT QS

[F Qs$="?2" THeN 384

[F RIGHTS(Qs, 1)="20 THEN 289
PRINI"Sorry, that isn’t a question."
PRINT"Please try again!"

GOIo 229

ANOSNER=Y

FOR I=1 TO 6.

IF MIDS(QS$,LeN($)=1,1)=MIDS(AS,[,1) [HEN ANSNzR=1
Nesl I

FOO WA= [0 1920%NUCT) SNEXL A

[F ANSWeRr I'deN PRINIWYES":GOT) 359
PRINLIYNOY

PRINT

Ik CO<20 THeN 219

PRINI"That’s the end of this rounds"
[NPUI"Would you like to try a7jain "3N0$
IF ASC(NS$) <>ASC("Y") THEN END

RUN

