
-------

' 

.Vol.2 No.5 

Newsletter U er Group b 19s1 QSI/UK S . August/Septem er 
j 

_j 

.,, 

ec-~L ·~ 
.,_>~ ~y ,t,,; .~.~ . 

1r(. ;fs,l~ .~ 
ff}(_ 111111,~,,. • •. w.1/ 

~~ 

Communications 
Modem communications for your system 

The BASICs of machine code 
Superboard 32X64 display: the full story 



~ 

Get your system 
on the BUS ... 
... the IEEE 488 to be exact! 
Our 680 expansion board connects directly to all Ohio Scientific based 
computers (including the UK101) and provides the following facilities : 

Centronics compatible output port 
IEEE compatible 1/0 port 
2K of battery backed non-volatile RAM 

Software supplied with the board provides drivers for the two output ports . 
When used with the OSI Superboard the 680 board provides a very powerful 
IEEE controller offering approximately 5 times higher execution speed, more 
built-in 1/0 capability and a lower price than an equivalent minimum system 
from Commodore or Apple Corporation . 

Price : £165 complete with documentation, guarantee and all cables and 
connections . 

MUPROMPT 
EPROM/EEPROM programmer 
Can your programmer load data from a 2716, a 2532 and a RS232 link and then 
program the edited results into a 2764? If not then you need MUPROMPT. It 
turns your Superboard , UK101 or PET into a real development tool. The system 
is idealy suited for use by Universities development labs and all those 
developing EPROM software. MUPROMPT requires a 32K system for operation 
and will read/verify /write to 2758 (both types) 2516, 2716, 2532, 2732, 2764, 27128 
(conforming to Intel standard) EPROMs and 2816 EEPROM. 

Price: £385 complete with firmware, cables and full guarantee. 

MUPROMPT is also suitable for small scale production of firmware . For larger 
requirements, the MUCOPY is a stand-alone insrument designed to 
complement MUPROMPT and capable of programming 8 or 16 devices 
simultaneously from a master . Please call for further details on both units . 

MUMON 
- a new monitor for OSI serial systems 

How many times have you wanted a warm-start on your OSI serial disk 1y1temf 
or machine code facilities? or even a built-in memory test? MUMON offora all 
of these facilities and many others in a single replacement EPROM t1kln1 loll 
than 10 minutes to fit. The firmware package includes the EPROM, fltt 
instructions and a comprehensive manual defining its operation ll! 
Price: £27 ex-stock. Overseas customers please add £3 for Alrmall, 
All prices quoted exclude VAT. 

MUTEK 

, 

I 

·, 

i 

/t 

/ 

/ 
) 

,\ 

3 
4 
5 
6 

8 
9 

10 

11 

13 
17 

23 
25 

27 

Contents 

BASIC programming notes 
SPC, TAB and POS - Bob Bonser 
Hidden aspects of BASIC - Jack Pike; Passing Variables 
CALL conversion routine 
BASIC programs in EPROM - Ian Dyson 

Machine code programming notes 
CEG/y\ON Screen Fill; Monitor conversions 
Extending CLEAR - Jack Pike-
GETKEY routine for the UK101 - John Leach 

Disk Notes 
Cassette printer /port on C1E with CEGMON and OS-65D 

Features 
The basics of machine code - Tom Graves 
Make your computer communicate - Richard Elen 

Reviews 
Word Wizard , Codekit and BASIC 5 from Premier 
Premier Publications' BASIC 4 - Richard Elen 

Hardware feature 
32x64 Display for Superboard II - / . R. Fama/ski 

The OSI/UK User Group Newsletter is published by the OSI/UK Group, @1981. 
Unless otherwise stated, copyright on each article is held jointly by the Group 
and the author. Requests for permission to reprint articles will normally be 
given where the article was origninated by the Group, if the request is mad&_in 
writing. The Newsletter is published approximately bimonthly, subject to the 
limitations of our essentially 'spare time' operation. Subscriptions run from 
January to December: thus subscriptions received during the year are 
automatically back-dated and new members receive the year's issues to date . 
The UK subscription is £10 per annum; overseas subscriptions are £11 surface 
mail, £14 airmail. All subscriptions include six issues of the Newsletter. Volume 
1, produced during our first year and consisting of four issues, is available as a 
complete set at £7 UK, £8 overseas, including postage. Cheques should be 
made payable to the OSI/UK User Group. 

Advertising space is available in usual magazine format positions: rates are 
available on request. Small ads are accepted at a rate of Sp per word and will 
normally be published in the next available Newsletter . 

The OSI/UK User Group Newsletter welcomes contributions of any length on 
subject which will interest members. Articles should preferably be typed or 
printed double-spaced on one side of the paper, or legibly handwritten. 
Articles will also be accepted on cassette or disk. 

The OSI/UK User Group exists to assist and inform the user of Ohio Scientific 
and related computer systems, primarily via the Newsletter. Written queries 
are welcomed, although due to committments we can only guarantee to reply 
when we have time available. An SAE should be enclosed with all queries, and 
if data sheets etc. are required, the SAE should be sufficiently large! 

All enquiries, subscriptions, articles etc. should be addressed to the OSI/UK 
User Group, 12 Bennerley Road, London SW11 6DS, England. 



,-· 
Under new man ment 

As you will no doubt know, we have 
had some difficulty getting the last 
couplE! of Newsletters into the postal 
system, this being the second issue 
which has been substantially late. Tom 
Graves gave several of the reasons in 
the last issue: Tom has had to get his 
business together and George and I 
have had to put earning money first as 
well. Quite simply, under the present 
economic state of this country, we all 
have less free time ('free' in more 
senses than one) to play with. Hopeful­
ly, our centralising the User Group in 
London (apart from production aspects 
of the Newsletter) will enable Tom to 
co ncentrate more on his business , and 
us to use our limited time more effi ­
ciently in dealing with your queries . It 
is easy to underestimate the time it 
takes to deal with complex technical 
problems , particularly by telephone , 
and while there is just the three of us, it 
is bound to be difficult . As a result , we 
would be grateful if technical queries 
by phone could be kept to a minimum 
for the time being , unle ss they reall y 
are urgent . Letter s, of co urse , should 
be accompanied by an SAE. 

Which brings us to another point. By 
rights , we should be charging rather 
more for membership than we do , as 
our primary function (producing the 
Newsletter) costs a great deal to per­
form. In addition, postage and tele ­
phone costs are always rising along 
with everything else in these inflating 
times . To offset a potentially crippling 
financial position, we are making more 
pages of the Newsletter available for 
advertising, as you will see from this 
issue. The resulting change of style 
will, we hope, enable us to avoid 
increasing subs by such a large amount 
at the end of the year. We are also 
examining other means of increasing 
cost-effectiveness, to help us give you 
the best service at the least possible 
cost. 

2 

.,_, 

Of course, one woy In whh h wP can 
help you better 11 If you can lwlp us£ 
Even for a small blmonthly OlJKazine 
(and w e do more than ju111 ·Jiroduce 
that) we are heavlly undor1t1f ed, and 
we would very much llke to hear from 
members who feel they con help out: 
people who know a fair nmount about 
certain aspects of OSI equipment and 
can answer the odd letter, or -those 
who . can help a little with administra­
tion . We are presently badly overwork­
ed! Any offers? 

Finally , the existence of this New slet ­
ter (and of the Group , in many ways) 
relies o n the co ntribution s membe rs 
make to the Newsletter . If you have an 
interesting comment, routine or dis­
covery, please tell us about it. It is quite 
disheartening to see little snippets 
from members appearing in the 
monthly magazine s, with never a word 
from them to us! If you do wr ite the 
odd item for the commercial maga­
zi nes, plea se at least send us a photo­
copy! The items which appear in the 
monthli es often need adjustment for 
other machines, o r can be link ed wit h 
oth er co ntr ibuti ons to produce a better 
result than a me re note amongst a 
pageful of items in th e monthlie s from 
people who have just discovered POKE 
15! We may not be the most accurate 
(we're not the wor st , e'ither!) but we do 
try , and we ' re not a profit-making 
group . We exist to provide a service , 
and the quality of our service doe sn' t 
just depend on what we do - it 
depends on all of us. We are not th e 
Group: (we are merely its co ­
ordinators. You and we are th e Group , 
and how good we are dep ends on how 
much we are a// willing to put into it. 
Without that effort we cease to exist as 
a User Group. And th at would be a 
pity. 

'\ 

., 

I 
I 

! 

-I 

,,, 

BASIC NOTES 
The SPC, TAB and POS commands 

in OSI BASIC 
Bob Bonser 

The SPC command is used in print statements in the following way: 
PRINT SPC(X)"EXAMPLE" 

where X may range in value from Oto 255. It may be thought of as a shorthand way 
of writing: 

A$=" 255 blanks": PRINT LEFT$(A$,X); "EXAMPLE" 
If X=0 then 256 spaces are printed; otherwise it behaves as expected. If a comma 
is inserted between the SPC(X) and "EXAMPLE" then "EXAMPLE" will be printed at 

•' the start of the next comma spaced field i.e . if X=5 "EXAMPI E" would be printed 
·I' starting in column 14. 

The TAB command is used again in print statements to format the output; for 
example: 

PRINT TAB(X)"EXAMPLE" 
X can take values from Oto 255. When using this command some thought must be 
given to the output required as the following examples will show: 

PRINT TAB(4)''THIS''TAB(6)"THAT" 
gives as output · 
THISTHAT 
because the cursor is already in column 8 after printing ''THIS" and cannot step 
backwards. 
PRINT TAB(12)"FIRST" CHR$(13) "AND THIS SECOND" 
gives 
AND THIS SECOND 
as the output; but if you run the program again after having first typed SAVE 
then you will see "FIRST" printed and then overwritten again. 

The operation of TAB can be altered by using POKE 14,0 which has the following 
1 effect. Using the statement PRINT TAB(A)"THIS";: POKE 14,0: PRINT 

T AB(B)''THAT" -
If A=0 and B=0 

THISTHAT 
If A=4 and B=0 
THISTHAT 
If A=4 and 8=1 
THIS THAT 
If A=0 and 8=10 
THIS THAT 
Note the effect of the POKE 14,0 command. 
A little used function OSI BASIC is the POS command. It is used in the following 

·1 way: 
PRINT "HELLO";: X=POS(0) 

This will result in X taking the value of 5. If the semicolon was replaced by a 
comma then X would have the value of 14 and if the semicolon was omitted then X 
would equal 0. The explanation of this odd result is as follows. 

3 



,:-

The value of X is the column number where any furth l"r p rlnlln K wo uld start. A 
use of this command is to right justify output . 
100 INPUT "3 values ";A,B,C 
110 PRINT"EXAMPLE ";A; 
120 X== POS(0)-1 
130 PRINT CHR$(10);CHR$(13); 
140 PRINT TAB(X-LEN(STR$(B)));B; 
150 PRINT CHR$(10);CHR$(13); 
160 PRINT TAB(X-LEN(STR$(C)));C; 
Also this command can be used to simulate a move cursor left comm and : 
100 INPUT "How many";Q 
110 A$=="A TEST OF THE POS COMMAND" 
120 PRINT A$; 
130 X==POS(0): PRINT CHR$(13); 
140 FOR Z==1 TO X-Q: PRINT CHR$(11);: NEXT 
150 PRINT"*" 

Hopefully, the above has removed a little of the mystery that has surrounded 
these commands. 

Hidden aspects of BASIC 
Jkk Pike writes: In case you are under the impression that there is little left in 
Microsoft BASIC in ROM that you are unaware of, here is a demo program for 
you. The most important feature of the program is the 'LOAD: INPUT A$' 
combination for preventing program exit on hitting RETURN in answer to an INPUT 
call. Among the other things demonstrated is that CLEAR clears the stack as well 
as all the variables with implications on its use in subroutines, and the comment 
line 5, which prevents accidental entry to the subroutine. This program can be 
exitted without using the BREAK key because it inputs some numerical variables as 
well as strings. An input sequence such as <SPACE, Z, Z, RETURN, RETURN> will exit 
the program. 
0 REM DEMO PROG - Jack Pike 
1 : : : : : : : : : : : : : : : 
2 : 
3 GOSUB 6 (to input routine) 
4 : 
5 SUB * test INPUT * 
6 LOAD: INPUT''Hit space bar & input A"; A$, A, A(-A*(A<)) 
7 PRINT"#" A$ "" A CHR$(A) A(.) "# 
8 CLEAR: REM clears GOSUB return address 
9 GOTO : (start) 
While on input, I have only recently realised that the input dell miters comma and 
colon are different. Colon terminates the input to variables on the llne (it also 
seems to have that effect when it is the first character on the llne In Imm ediate ( 
mode). This property of : could be useful in data files when comm~nts rn uld be 
added to the tile following the variable value, e.g. 9: Stock Item no, 
4 

..,_ 

1) 
·.~ 

-\ 

... 
t 

I 

'·1 ) 
I• 

f 

~ - ,. 

t 

I 

Extra Mathematical Functions for BASIC 

The mathematical functions provided in BASIC may seem to have been chosen in 
a rather arbitrary manner (ATN's main function according to OSI seems to be to 
get wiped out whenever they want room for a new keyword!). Here, for those 
who would like to use some of the functions not included but who cannot 
remember the derivations, are the remainder of the trig and hyperbolic functions. 
These could be declared in a program by using DEF. 

The list below has been adapted from 24 Tested Ready-to-Run Games Programs 
in Basic by Ken Tracton (TAB Books) .. The following functions which are not typical 
of standard BASIC library functions may be easily implemented by the following 
formulae: 
ARCSI N(X)==ATN(X/SQR(X*X+1 )) 
ARCCOS(X}==ATN(X/SQR(X*X+1))+1.5708 
ARC SEC(X)==ATN(SQR(X*X-1))+(SGN(X)-1)*1.5708 
ARCCSC(X)==ATN(1/SQR(X*X)-1 ))+ (SGN(X)-1 )*1.5708 
ARC COT(X)==ATN(X)+1.5708 
ARC SINH(X)==LOG(X+SQR(X*X+1)) 
ARC COSH(X)==LOG(X+SQR(X*X-1)) 
ARC TANH(X)==LOG((1 +X)/(1-X))/2 
ARC SECH(X)==LOG((SQR(X*X+1)+1)/X) 
ARCCSCH (X) == LOG((SGN(X) *SQR(X*X + 1) + 1 )/X) 
ARCCOTH(X)==LOG((X+1/(X-1))/2 
COT(X) == 1 IT AN (X) 
CSC(X)==1/SIN(X) 
SEC(X)==1/COS(X) 
COSH (X) == (EXP(X) + EXP( - X))/2 
COTH(X) == EXP( - X)/(EXP(X)-EXP( - X)) *2 + 1 
CSCH(X)==2/(EXP(X)-EXP(-X)) 
SECH(X)==2/(EXP(X)+ EXP(-X)) 
SINH(X)== (EXP(X)-EXP(-X))/2 
TANH (X) == EXP( - X)/(EXP(X) + EXP( - X)) *2 + 1 

CALL conversion routine 

If you have the new BASIC 1 chip with CALL, or have other need for a program to 
check the hex equivalent of a value, this subroutine from Dave Woolcock does 
the trick simply. Enter the routine after setting X to the value to be converted; the 
hex equivalent is returned in X$. 
15000 LO==X AND 255: Hl==INT(X/256): X$=="$": X==HI: GOSUB 15010:.X==LO 
15010 Y==(X AND 240)/16: GOSUB 15020: Y==X AND 15 
15020 X$==X$+CHR$(Y+48-(Y>9)*7): RETURN 

5 



f ,,--

Implementation of BASIC programs In EPROM 
Ian Dyson 

The standard board microcomputer provides an accaptablo ranse of facilitie!. 
which is available at switch on. The majority of computer onthusl111ts accept the 
five minute delay which may be required to load a program from cassette, but I 
suspect that many would be discouraged if they had to lood the BASIC Interpre ter 
from tape before they could use the machine . Simil arly , when the computer is 
being used in machine code , the enthusiast will prob ably store and load programs 
using tape . (Implementation of ExMon on EPROM, though, has proved invalu­
able) . 

There is a sub stantial potential for using board comput ers for industrial and 
laboratory application s. With the addition of a VIA , the system can become a 
cost-eff ective dedi cated co ntroller or data logger ; BASIC can be used for numb er 
crun ching or report writing . For the se application s we may be un able to re ly on an 
enthusiastic operat o r; an industrial controller must have the machin e code in 
ROM with auto -start and as few external swit ches as po ssibl e. If BASIC is to be 
used where operator intera ction is required (Report Writer , Result s Sorter etc. ), 
ther e are advantage s if the BASIC program is in EPROM: no ski ll is requir ed to 
load the program, there are no load errors and no accidental corruption of the 
program can occur . 

The use of EPROM is well established for machine-code appli cation s; th e 
technique is equally valid for BASIC programs . 

The BASIC interpreter of the UK101 and Superboard requires that the addr esses 
which bound the memory reserved for storage of the program and for variable 
storage when the program is running are defined in such a way tha t th e 
interpreter can find the succession of in struction s and can stor e var iables at real 
memory locations without wr iting over the program . 

Normally, the program is packed in from the bottom o f the user memory, a 
record of the top of program memory being kept ; the memory above th e prog ram 
is used for variable storage when the program is running or when the machine is 
used in the direct mode . 

For our requirements it is fortunate that these two areas of memory can be 
treated independently by the interpreter . The program storage can be at 
addresses above that used for variable storage provided the relevant pointer s are 
adjusted. 

The relevant pointers are in the zero page of memory: 
• 1st line of BASIC pointer ($0079, $007A), indicates the address at whi ch th e f irst 

line of the program starts. Each encoded statement includes th e addr ess of the 
next. As each statement is interpreted, a note of the memory locati on of the 
next statement is -updated . The system can follow the pr ogra m wi thout 
reference to the next pointer which is incremented as the pr o~ram is wri tt en 
or loaded in order that it may be used to prevent the overwriting of prog ram 
by variables . 

• start of variables pointer ($0078, $007C), indicates the memory address above 
which can be used for storage of variables without overwriting the progra m. 

• top of memory pointer ($0085, $0086) restricts th e top of memory address 
which is available for BASIC and is usually set up at cold start. 

The pointers are set up by cold start and NEW as follows: 

6 

✓• 

) 

.. 
I 

/ 

'i 

• .. .. ~ 

'{~ 
"i!i 

$0079 
$007A 

01 
03 

points to $0301, first line of BASIC 

' $007B 
' $007C 

>$0085 
04 
03 

points to $0304, start of variable space when no program 
stored 

$0086 
xx 
xx 

$0300 00 
$0301 00 
$0302 00 

points to top of BASIC user memory 

start of program null 
end of program nulls 

When a program is loaded , the start of variable pointer is changed to an address 
above that used for program storage . 
Using EPROM 
To store a program in EPROM, it is convenient to use an address block above the 
user RAM. It is necessary to change the contents of the first line of BASIC pointer 
to the new start address ; the location below the start address must contain a null. 
The top of memory pointer has to be changed for writing or loading a program 
into abnormal locations (otherwise an OM ERROR will occur). The latter change 
should not be made when RUNning the program . 

To write the program, it is necessary to temporarily select a block of RAM at the 
intended EPROM address. The program should have been written , tested and 
saved in advance. The method of implementation is best indicated by the 
following example of putting a program into EPROM at address $3800 onwards . 

Before starting it is a good idea to fill the block of RAM with FF's in order - that 
unused locations are not programmed when the EPROM is burnt. 

The following machine code is entered at the beginning of the block. It changes 
the first line pointers to $3811, puts the null at $3810 (when setting up the RAM) 
and then jumps to BASIC warm start. 
$3800 LDA #$11 A9 11 
$3802 ST A $79 85 79 
$3804 LDA #$38 A9 38 
$3806 STA $7A 85 7A 
$3808 LDA #$00 A9 00 
$380A ST A $3810 8D 10 38 
$380D JMP $0000 4C 00 00 

Perform cold start, reset, and enter the monitor . Manually set the top address 
of the temporary RAM in the pointer $0085 and $0086 (00 and 40 in our example) . 
Set the monitor address to .3800 when pressing G will warm start the system. 

After typing NEW RETURN, the program can be loaded normally except that the 
code is stored at $3811 instead of $0301. The contents of the memory block may 
be saved as machine code, MOVEd to a more convenient area of RAM and saved 
as machine code or used directly for ROM burning . After a cold start the 

\ computer can be used in BASIC without corrupting the special program . (If the 
' user RAM extends to the special area, the user memory must be restricted in the 

usual way at cold start). 

7 



,, 

To test the program: 
1. Cold start to restore pointers 
2. Reset 
3. Start at $3800 in the monitor mode. This changes th e fir st line of BASIC 

pointer and performs a warm start. 
4. On RUN, the program, in its abnormal location , wlll be followed; the 

whole of the user RAM above $0304 is available for variable storage. 
The program can be burnt into EPROM directly from the temporary RAM or 

after MOVEing and saving. After a cold start, the computer can be used in BASIC 
for EPROM burning. 

Running the program in EPROM follows a BASIC cold-start and entry through the · 
Mo'n'1toi as descnbe ·c1 tor 'testint I he .program may also follow a warm start and 
Monitor entry. It may be interrupted, continued and re-RUN as a normal program 
hut cannot be edited. The EPROM program may be co-resident with a RAM 
program and the two can be RUN alternately by resetting the pointer s at $79/$7A 
to 01/03 to warm start in RAM or reset and warm start which is followed by monitor 
entry for the EPROM program. Similarly , several EPROM programs may be 
implemented and activated by their own machine code entry . 

MACHINE - CODE NOTES 

CEGMON screen fill 

fP' 

} 

,) 

CEGMON, unlike the original monitor, uses a subroutine to clear the screen, 
which can be called into action very easily . It resides at $FE59-$FE6F and is largely 
relocatable . If it is moved to start at $0240, for example, (MFE59,FE6F> 0240), it may 
be called from BASIC and used as a screen fill. The character to be used is POKEd 
into 587, and the routine is called by POKE 11,64 : POKE 12,2: X=USR(X). If you 
have the new BASIC 1 chip, CALL 576 is sufficient to instantly fill the screen. (This 
and a couple of other items were kindly supplied by the UK101 User Group, 9 
Moss Lane, Romford , Essex). 

I! 

.,.. 

Monitor mods 
Some of the new monitors for our machines are less compatible than others . 
Sometimes changes are minor; sometimes less so. HP.re are a couple of useful 
conversions: 
Key press routine: SYNMON and Superboard Series 2 CEGMON is POKE 11,0: 
POKE 12,253: X=USR(X): X=PEEK(531). For other CEGMON s, use PEEK(533) 
instead of 531. Under WEMON, the routine is POKE 11,52: POKE 12,248: 
X=USR(X) : X=PEEK(531) 
CompShop's Super Space Invaders needs these mods for CEGMON use: Load as 
a machine-code program (BREAK M L); after machine code and BASIC sections 
have loaded, BREAK and Warm Start; in lines 984,986 and 1450 change 255 to 251; in 
immediate mode, enter POKE 660,76: POKE 661,232: POKE 662,28; then RUN. 
We would be grateful to hear of other conversion s to commo n routines and 
programs so that they run under the various available monitors. 

8 

-• 
t ,, 

}'j 

:i 
91 

:) 
\·,~t.i 
:\ 

• 

, 

. 
! 

) 

' 

Extending CLEAR 
Jack Pike 

~ After the discussion of CLEAR in earlier Newslettf!rs I had a go at defining an 
improved CLEAR. I wrote a modification to the BASIC $BC routine to add an 
optional parameter to CLEAR, such that CLEAR(N) would release N bytes from the 
top of BASIC. Breaking into the $BC routine indeed provides a route for an 
extended BASIC. Something more than .BK should be set aside as the recom­
mended location for languages. A 16K slot is probably needed. I was pleased to 
see that you are thinking about the problem of 'where to put things' . 

The syntax for the extended command is CLEAR(N), where N is an expression 
giving the number of bytes to be ' freed ' at the top of RAM (-32768 ~ N ~ 32768). 
DO 02 BNE +2 ; Displaced BASIC operating code 
E6 C4 INC $C4 ; from $BE to $C1 
8A TXA ; store X 
48 PHA ; on stack 
A2 00 LOX #$00 
A1 C3 LOA ($C3, $C4) ; get current BASIC character 
Test previous and current BASIC character for CLEAR token and '('. 
A6 E2 LOX $E2 ; previous character 
85 E2 ST A $E2 ; current character 
EO 9A CPX #$9A ; is previous character CLEAR? 
DO 1B BNE +27 ; no, then return 
C9 28 CMP #$28 ; is current character ' (' ? 
DO 17 BNE +23 ; no, then return 
Get variable value following CLEAR( as 15-bit signed integer in $AE (hi) and $AF 
(lo). 
20 FS AB JSR $ABF5 ; get value of expression 
20 05 AE JSR $AE05 ; put value in $AE (hi), $AF (lo) 
Change pointer to top of BASIC RAM at ($85, $86) and string pointer at ($81, $82). 
38 SEC 
AS 85 LOA 
ES AF SBC 
85 85 STA 
85 81 STA 
AS 86 LOA 
ES AE SBC 
85 86 STA 
85 82 STA 
Tidy up and return. 

$85 
$AF 
$85 
$81 
$86 
$AE 
$86 
$82 

; current top of BASIC (lo) 
; new top of BASIC 
; amend $85 and 
; bottom of string space 
; repeat for pointer (hi) 

68 PLA ; replace X 
AA TAX ; from stack 
60 RTS ; and return 
This routine is fully relocatable. Location~ $BE to $C1 in the $BC routine should be 
replaced with 20 xx xx EA, where the missing address points to the beginning of 

'• the routine above. 

9 



,. ,, 
GETKEY routine for the UK 101 

John Leach 

The UK 101 lacks a GET command, as found in th e PET. It Is poss ib le to overcome 
this problem in BASIC by a clumsy series of POKEs to the keyboa rd memory 
location, but decoding for any possible key is quit e a problem, and takes so long 
that it is easy to miss key entry by nimble fing ers; a serious disadvan tage is that 
CTRL-C has to be disabled. 

This short Machine Code routine , written for th e New Monitor (now the 
standard monitor) allows the user to have compl ete con t ro l, CEGM O Ners and 
WEMONers will have to find their own solution s. 

10 REM GETKEY Machine Code routine 
20 FOR 1=592 TO 619: READ Z : POKE 1, Z : NEXT I 
30 DATA 173,79,2,240,5,32,231,249,208,4,141,19,2,96,32 
40 DATA 0,253,169,0,141 ,79,2,169,1,141,20,2,96 
50 REM LOAD , RUN and type NEW (protected from Cold Start on ce loaded) 
60 REM 
70 REM Demonstration program 
100 POKE 11,80: POKE 12,2: POKE 591,1 : REM Startup 
110 X=USR(X) : Z=PEEK(531): IF Z<>0 GOTO 130 
120 PRINT " KEY NOT PRESSED": GOTO 110 
130 PRINTCHR$(Z) : POKE591,1: GOTO110 

The flag at 591 allows user control of the result of key pressing . If 591 =1 , the USR 
routine returns Oat 531 if no key is pressed , but if a key is pressed, 531 contain s 
the ASCII value of the key , and flag 591 is set to 0 before the routine return s to 
BASIC. If 591 =0 , the USR routine returns 0 in 531, whether a key is pre ssed or not. 

The use of the 591 flag allows the programmer to do something with the 
character entered, and after that the keyboard is dead until a POKE 591, 1 is 
encountered . This prevents keybounce, and multiple entry of keys, unless this is 
wanted . Note that there is no need to disable CTRL-C. Normal INPUT is not 
affected . 

The Machine Code routine uses New Monitor subroutines as shown . 

0250 AD4F02 LDA $024F ; Test 591 flag 
0253 FOOS BEQ $025A ; If zero , bypass Keyboard entry 
0255 20E7F9 JSR $F9E7 ; Test for Key presses (Monitor ) 
0258 D004 BNE $025E ; If pressed, go and decode it 
025A 8D1302 STA $0213 ; Set 531 to zero (0 in accumulator ) 
025D 60 RTS ; and return 
025E 2000FD JSR $FDO0 ; Keyboard input routine (M onit o r) 
0261 A900 LDA #$00 
0263 8D4F02 ST A $024F ; Zero 591 flag 
0266 A901 LDA #$01 
0268 8D1402 STA $0214 ; Spoil $FDOO compari son with $0213 

),-' 

' 7 ::,;, 
I 

~· 

026B 60 RTS ; on next call (otherwi se $FD00 wait s for entry) ,I 
,I 

f6,, 

10 

,,.. i 

DISK NOTES 
14 Character names for 0S650. 
A very useful hint from OS65D users in America points out that it is possible (and 
quite easy) to alter the DOS so that 14 character names can be used. To do this , 
make the following changes to the DOS . 

Address find change to 
~D~ W7 WF 
$2DE3 $06 $OE 
$2DF1 $F8 $F0 
$2DF4 $08 /'..Y, $10 

VT D1Ao-.1-r .... Ac.1C. -af:'{.).;:. 1..0c't- :J" d i '2..1io7J.·OC,. 
Apart from these modifications , the variou s utilitie s will h ave to be rewritt en to 
cope with the new directory format and a BEXEC* program should be ready to put 
on the altered disk. Obviously it will not be po ssible to have as many entr ies in the 
directory without more extensive changes to the DOS . It should be possible to 
develop this idea further so as to have a code letter giving the type of file 
(Assembler, Basic, Text etc. ) and maybe even the date. If anyone follows this 
through we would like to hear about it for a follow up article , especially if it 
included details of a similar enhancement to 65U 

CURRENT VERSIONS 65D 

Most mini-floppy users have been supplied with 650 version 3.1. This version of 
the DOS will only work successfully at 1MHz and is not at all easy to convert . 

, Version 3.2, the NMHz version , is available , but buyers should be aware that N 
means 1, 2 or 3.3; 1.5MHz operation is not catered for, although it may be 
possible to alter 3.2 successfully . However, all speed freaks should take note ot 
the fact that the 610 board disk interface derives its clock frequency for the ACIAs 
from the processor clock , and thus alterations will have to be made here to 
achieve standard data rates onto the disk. Does anybody know where 3.2 sets up 
the NMHz variable at $267B? 

,. !lo\ 

Cassette and printer problem with a disk-based Cl E under OS-650 having fitted 
CEGMON 
One reader writes : We operate a 32K C1E with single disk drive for school office 
use, but fitted CEGMON as the machine is also used to teach programming to 
young children (10--14yrs), CEGMON 's editing facil ities being invaluable here . 

However, if you fit CEGMON, you then lose the use of the cassette and printer 
port when under OS-65D, as the fitting of a C1E version of CEGMON relocates 
this port to $FOO0, whereas OS-65D still thinks it is at $FCOO, because thqt is where 
l he C2 monitor in SYN MON (used in the C1 E) places it, and a C1 E uses C2-style 
disks. 11 

■ • ... 



There are two possible solutions : 
• Fit a four-pole, 2-way switch to re-addr ess the AC IA correctly when in , 

OS-65D (i.e. to reverse the modification necessary wh en fitting CEGMON to 
the C1E). 

• Try to modify the OS65D operating system to relocate th e cassette port from 
$FCOO to $FOOO. 

It was this latter solution I chose to adopt, and I eventu ally came up with the 
discovery that five memory locations, loaded from tr ack-0, have to have their 
contents changed from $FC to $FO. They are : $24D0, $24D8 , $24D C, $24f8 and 
$2501. 

Alteration of these locations requires that we: 
• Read track-0 into memory , using a convenient start locati on : e.g. $4200 (it 

normally loads to $2200) 
• Using the extended monitor (or indeed the CEGMON monitor ) change the 

contents of the appropriate five locations from $FC to $F0 
• Write the modified system back onto track-0 (preferably onto a new d isk in 

case of errors!) 

The following procedure carries out the necessary modifications : 
1) Boot disk to be modified 
2) Enter kernel (type EXIT from BASIC) 
3) EM (loads Extended Monitor. RETURN needs to be hit after every line unl ess 

stated) 
4) !CA 0200=13,1 
5) !GO 0200 (this gives menu for copier or track-0 R/W ) 
6) 2 (select track-0 R/W) 
7) R 4200 (load track-0 to $4200, i.e. with an offset of $2000) 
8) E 
9) RE EM 

10) @44D0 
11) 44D0/FC FO 
12) @44D8 
13) 44D8/FC FO 
14) @44DC 
15) 44DC/FC FO 
16) @44F8 
17) 44F8/FC F0 
18) @4501 
19) 4501/FC F0 
20) !GO 0200 (Menu for copier or track-0 R/W) 
21) 2 (select track-0 R/W) 
22) W4200/2200,8 (writes system back to track-0) 
23) E 
And the job is done! 

12 

,,.. 

• 
~ 

• 
• ? . 

\ . 
-J 

•\'; 

( 

The BASICS of machine-code Part 6: Tom Graves 

Before we start, we ought to tidy up a few errors that have crept in,during this 
series. The "Binary Beans" routine in Part 4 seems to have suffered the most; our 
keyboard op didn't make quite so much of a mess of it as of the renumberer in 
that issue, but some errors came through. These are listed in the "Glitches" 
section of this issue. 

In the last section, some people were confused by my using both S (sign) and N 
(negative) for the sign bit, bit 7; the former is Leventhal's term, the latter is Zaks', 
and I'll stick to the 'N' version from now on. Also in the last part, two more 
mistakes, one a keyboard error, the other a blunder on my part, I'm sorry to say. 
The keyboard mistake was in lines 40 and 50 of the subroutine series - it should 
have read ... C=1 (new line) 50 GOTO 100 ... not C=150 GOTO 100! The blunder 

. was that I have the carry value the wrong way up in the subtraction operation in 
line 70: C should be 1 to start, .not 0; so the line should read : 
70 C=1: IF RES<0 THEN C=0 
fhe subtraction routine is complicated in that it uses the inverse of the carry 
rather than the carry itself. 

In any case, now that we have the main processor flags under control , we can 
look at the opcodes themselves, and simulate them by BASIC statements . As with 
last issue, we will leave the problem of the variety of addressing modes aside for 
the moment, and assume that- as happens with the 6502 itself - the addressing 
is sorted out separately , leaving the contents of the 'effective address' in a 
variable called MEM. The disentangling of that effective address will be dealt with 
in the next part of this series. 

We made a start last time by defining the entry point to the 'flags' subroutine for 
most of the opcodes that affect them. We also need to make sure that all values 
stay within the limits of an eight-bit word, from Oto 255; OSl's BASIC should be 
capable of maintaining all values as integers, but if problems arise this will .also 
need to be checked with an INT statement. 
5 REM - V flag test 

10 V=0: IF (RES AND 64) THEN V=1 
20 RETURN 
25 REM - V and C+ update 
30 GOSUB 10 
35 REM - C+ only update 
40 C=0: IF RES>255 THEN C+1 
50 GOTO 100 
55 REM - V and C- update for subtract 
60 GOSUB 10 
65 REM - C- only update for compares 
70 C=1: IF RES<0 THEN C=0 
80 GOTO 100 
85 REM - Cl update for LSR, ROR divides 
90 C=0: IF (RES--INT(RES))<>0 THEN C=1 
95 REM - general N and Z update for most operations 
100 Z=1: IF RES<>0 THEN Z=O 
110 N=0: IF (RES AND 128)<>0 THEN N=1 
115 REM - limit RES to eight bits wide 
120 IF RES=>256 THEN RES=RES-256 
130 IF RES<0THEN RES=RES+256 
140 RETURN 13 

- .. -



We can now expand this as an almo st com plete loo k-up tabl e for the 6502 
opcodes. (Almost, because some of the log ic operatio ns are simpl e in machine 
code but extremely complex in BASIC, and because the in ter rupt , stack and 
decimal modes have no easy equivalents in BASIC at all - so unless you really like 
getting confused ... ) . Remember that we only have th ree active var iables: A, X and 
Y. The flags C, V, N and Z are only singl e bit s in a regis ter, and can thu s only 
contain 0 or 1; and MEM and RES (result) variabl es represe nt temporary stores 
within the processor itself . The table below show s all of t he 6502 opc od es with the 
exception of BRK, CLD , CLI, EOR, PHA, PHP, PLA, PLP, RTI, SEO, SEI, TSX and TXS. 
1000 IF OP$= "ADC" THEN RES=A+MEM+C : GO SUB 30: A = RES 
1010 IF OP$= "AND " THEN RES=(A AND MEM) : GO SUB 100 : A = RES 
1020 IF OP$= "ASL" THEN RES=MEM *2: GOSUB 40: M EM = RES 
1030 IF OP$= "BCC" THEN IF c=0 THEN GOTO ... 
1040 IF OP$=" BCS" THEN IF C<> 0 TH EN GOTO .. . 
1050 IF OP$= "BEQ" THEN IF Z<> 0 THEN GOTO .. . 
1060 IF OP$= "BIT" THEN RES=(A AND MEM) : GO SUB 100: RES= M EM: GOSUB 
10: GOSUB 110 
1070 IF OP$= "BMI " THEN IF N<> 0 THEN GOTO ... 
1080 IF OP$= "BNE" THEN IF Z=0 THEN GOTO .. . 
1090 IF OP$= "BPL" THEN IF N=0 THEN GOTO .. . 
1100 IF OP$= "BVC" THEN IF V=0 THEN GOTO .. . 
1110 IF OP$=" BVS" THEN IF V<> 0 THEN GOTO .. . 
1120 IF OP$=" CLC'' THEN C=0 
1130 IF OP$=" CLV" THEN V=0 
1140 IF OP$= "CMP" THEN RES= A- MEM : GOSUB 70 
1150 IF OP$=" CPX" THEN RES= X- MEM : GOSUB 70 
1160 IF OP$= "CPY" THEN RES=Y- MEM: GOSUB 70 
1170 IF OP$= "DEC" THEN RES=MEM- 1 : GOSUB 100: MEM = RES 
1180 IF OP$= "DEX" THEN RES=X- 1: GOSUB 100: X=RES 
1190 IF OP$= "DEY" THEN RES= Y- 1: GOSUB 100: Y= RES 
1200 IF OP$=" 1NC" THEN RES=MEM + 1: GOSUB 100: MEM=RES 
1210 IF OP$= "1NX" THEN RES=X+1 : GOSUB 100: X=RES 
1220 IF OP$=" 1NY" THEN RES=Y + 1: GOSUB 100: Y= RES 
1230 IF OP$=" JMP" THEN GOTO .. . 
1240 IF OP$= "JSR" THEN GOSUB .. . 
1250 IF OP$=" LDA" THEN RES=MEM: GO SUB 100: A=RES 
1260 IF OP$=" LDX" THEN RES=MEM : GOSUB 100: X=RES 
1270 IF OP$=" LDY" THEN RES= MEM : GOSUB 100: Y=RES 
1280 IF OP$=" LSR" THEN RES= MEM /2: GOSUB 90: MEM=RES 
1290 IF OP$= "NOP " THEN REM 
1300 IF OP$= "ORA" THEN RES=( A OR MEM ): GOSUB 100: A=R ES 
1310 IF OP$= "ROL" THEN RES=MEM *2+C: GOSUB 40: M EM = RES 
1320 IF OP$= "ROR" THEN RES=MEM/2+(C *128) : GOSUB 90: M EM = RES 
1330 IF OP$= "RTS" THEN RETURN 
1340 IF OP$= "SBC" THEN RES= A- (MEM+ (1- C)) : GOSUB 60: A= RES 
1350 IF OP$= "SEC" THEN C=1 
1360 IF OP$= "STA" THEN MEM=A 
1370 IF OP$= "STX" THEN MEM=X 
1380 IF OP$= "STY" THEN MEM=Y 
1400 IF OP$= "TAX" THEN RES=A: GOSUB 100: X=RES 
1410 IF OP$~"TAY " THEN RES=A: GOSUB 100: Y=RES 
1420 IF OP$= "TXA" THEN RES=X: GOSUB 100: A=RES 
1430 IF OP$= "TYA" THEN RES=Y: GOSUB 100: A= RES 

14 

"' 

f ~\) 

' 

<') 

I' 

• 

• 

Most of these are simple enough to follow, even if the BASIC code whi ch 
represents them is somewhat tortuous. (it also gives you some idea of how much 
work the processor does even on the 'simple' instructions!). There are,' of cours e, 
a few confusions: 

<• ADC - remember that the 6502 has no simple addition - it always does an 'add 
with carry', hence the importance to clear the carry before most additions . 
BIT - probably the most confusing of all the 6502 opcodes. It first does a logi cal 

'and ' between A and MEM, setting the Z flag accordingly; it then copies bit s 7-and 
6 of MEM into the N and V flags respectively (overwriting the setting of N from the 
previous GOSUB 100); and throws the rest of the result of these operations away, 
saving only the settings of these three flag bits as a result of the operation. The 
instruction is used mostly as a flag test, particularly with 1/0 devices like the 6821 
PIA and 6850 ACIA that are used variously in the OSI systems; it also allow s you to 
keep up to three flag-bits in the same byte (if you can keep track of them! ). 

} CMP, CPX, CPY - note that, like BIT, these only set flags; they throw away the 
actual result of the operation , leaving the regi sters ' content s intact. Because to 
thi s, the comp .are and BIT opcode s are sometimes used to 'conceal' another 
instruction , as was described in the discu ssion on the input routine in the first 
part of this series . 

ROL, ROR - remember that these are rotates , not simple shifts, with the 'ninth ' 
bit held in the carry. In ROL the carry is rotated into bit-0 (hence the simple 
addition), while in ROR it is rotated into bit-7 - hence the addition of C*128, 
C*2 j 7. 

SBC- note that , as with ADC, the 6502 cannot do a simple subtraction ; it can only 
do one with carry, or rather 'borrow'. The inverse of the carry is used ((1-C) in t-he 
statement) - hence the carry must be set with SEC before a simple subtraction. 
The remaining instructions not in the table above can cause even more confusion 
- hence the reason for leaving them out . The machine-code 'exclusive-OR' EOR 

, instruction can't be described by a simple one-line statement - as you'll see if 
you look up what an exclusive-OR actually involves. Each bit of MEM has to be 
checked separately against the respective bit in A, calling for a fairly complex FOR 
. .. NEXT loop. The other 'missing ' instructions fall into three groups : the interrupt 
handlers BRK, CLI, RTI and SEI; the decimal-mode pair CLD and SED; and the 
stack group PHA, PHP, PLA, PLP, TSX and TXS. 

BRK performs much the same action as STOP in BASIC, except that its method 
of working needs specific set-up routines before it will work (as opposed to 
hanging-up the system); in fact it acts exactly like a software-controlled version of 
an interrupt, and is only distinguishable from the IRQ hardware interrupt by 
setting the B flag-bit (bit-4) in the status register. There is no easy way to simulate 
the other interrupt instructions, except perhaps with the WAIT statement in 
BASIC. 

The 6502's decimal-mode addition and subtraction is not something to be 
recommended without some experience, since out of the variety of arithmetical 
instructions available on the 6502, only ADC and SBC are affected by it - the 
rotates, shifts and logical operations are not. When the Decimal-mode flag (bit-3 
of the status register) is set by a SED instruction, all addition and subtr~ction is 
done in BCD or binary-coded decimal form : a result greater than 9 in any nibble 
generates a further +6 addit,on, to correct the result to binary format (e.g. 

15 

- '• -



-

$B+$6=$11, the correct BCD representation of decimal 11), and the reverse 
applies to values less than 0, where a further --6 subtraction takes place. As you 
can imagine, this produces decidedly scrambled results if the decimal-mode is 
applied in the wrong place, such as working with ASCII -coded text ... beware! 

The last group, the stack operations, can be simulated to some extent in BASIC; 
but not really adequately, as the 6502 uses its single hardware stack to perform · 
two separate functions. One is the temporary storing of registers' contents and 

, . 
the like, to protect them from being changed during some subroutine; the other 
is saving subroutine return addresses, something we cannot simulate at all in 
O5I's BASIC. We can simulate the stack itself quite simply: define an array called 
STACK(S), with a pointer variable called 5. In the 6502, the stack pointer goes 
downward with increasing 'pushes'; so to start we set Sat a fairly high level - say 
40 locations - with X=40: S=X (the BASIC equivalent of LDX #$28, TXS, the 
standard SYNMON/CEGMON set-up value), and do an S=S-1 before each 'push', 
or 5=5+1 after each 'pull' - making sure that S never exceeds O at the bottom 
end or the dimension of the STACK(S) array at the top: 

1440 IF OP$="PLA" THEN RES=STACK(S): GOSUB 100: 5=5+1: A=RES 
1450 IF OP$= "PHA" THEN 5=5-1: STACK(S)=A 
1460 IF OP$=''T5X" THEN RES=5: GOSUB 100: X=RE5 
1470 IF OP$=''TX5" THEN S=X 
PHP and PLP, which save and restore the processor status register respectively, 
would need to be simulated by a FOR ... NEXT loop converting the contents of the 
registers into a single combined value, and restoring them in the same order . 

The difficulty with this simple-looking approach is that it conceals a trap: 
'pushing' A within a subroutine, and trying to 'pull' it after returning from the 
subroutine will result in chaos. The processor would try to 'return' to an address 
made up of the saved contents of A as the low-order address, the former 
low-order byte as the high-order part of the address, and the former high-order 
byte (in the unlikely event of recovery) masquerading as the former contents of A. 
To get round this, and to illustrate the problem, we need to change our earlier 
and simpler definitions of JSR and RTS: 
1250 IF OP$="JSR" THEN S=S-2: GOSUB ... 
1340 IF OP$="RT5" THEN 5=5+2: RETURN 
BASIC will tell us very quickly, in the form of a ' ?BS ERROR', if we exceed the 
limits of our software stack. \ 
This roughly sums up the functions of the opcodes of the 6502. At first sight, it -» 
seems very limited, and a long way from BASIC - but that should illustrate partly 
the flexibility of low-level languages, and also the amount of work that went into 
writing your BASIC! By comparison even with other processors like the Z-80, for 
example, the opcodes may well seem very restricted. But the advantage of these 
simple opcodes is that they are simple; and the real power of a processor lies not 
just in its instruction set, but the way in which it can use it to work on memory-
its addressing modes. By comparison with the Z-80, and particularly the 6800, the 
6502 has a much richer set of memory modes. They are also extremely fast - the 
indirect-indexed mode, one of the most powerful of the set, will load the A 
register in a mere 2 clock cycles, compared to 23 for the nearest equivalent on the 
Z-80, while the 6800 has nothing like it at all. But the addressing modes - the 
means by which we arrive at loading the variable we've called MEM in the list 
above - can be very tortuous indeed: and that's what we will deal with in the 
next part of this series. 

16 

,,.. 

. , 
• 

/ 

t 

,. 

Make your computer communicate 
Rich,ird Elen 

The idea of the Computn Hullt•tin Bo.mi Scrviu· 1urns, is iinally (.JI< hing on in 
the UK, and about time too. The idl'.i is ,impil': you equip your~ell with ,1 ll'rmin,1I 
(or make a computer prelt'nd to be ont') , a modem, ;i telt•rh<llll', ,rnd you t,tn di,1I 
up a CBBS and access telt•text-typ,· clat,1, •.oitw.ire , arlitll'~. iniormation ,1nd the· 
like. The telephone we (Jn take ior granll'd : the other parh ol the t h,1in 1,1kt' ,1 hit 
oi thinking Jbout. 
The modem 
A modern is a devin• which pnablPs vour co111pull'r•terminal lo lw conrwcll'd lo ,1 
telephone so a~ to lw able to send or rt't t•ivl' data. Although it i" tht'orl'lit ,illy l,rnd 
practically) possible lo hook up your cas,t•llt· intl'rtan· to lhl• phorw lirw vi,1 ,111 

a·coustic coupler IJ device with a rninophorw and loll(bpl'Jkl·r whi( h squirl'-. thl' 
cassette data tones into your tl'l<>rhorw hand"el ), this "ysll'lll has st'vl'rl' 
limitations . The main problem is that while you< ould I,1lk lo othl'r OSI 111,H hirws 
and UK I Oh , you would not lw a bit• to talk to PE Ts, App!l's and lhl' like : this makl's 
your (ommunication J little limited , ,1lthough ii might bt• u,l'lul ior ~laril'rs. Mort ' 
useful is to have a devitl' whi( h produu•s standard lone, which .irt' recognisl •d ,111 
over the world, and at a standard baud rate which most people can utilise. Such a 
standard exists in the Unill'rl States: tlw Kell ~landard, ,rnd 111,inv moderns 
available therl' (and no doubt imported into the UK) List' this standard'. The usu,1I 
baud rate is mo baud , which "uil, the· vast majority oi svstt•ms. The usual iorm oi ,1 
modem is a device which attaches to the comµutt 'r via an RS2 QC ,eri,1I link lor 
sometimes J paralkl port) , t,1king thl' data signal., ,1nd (OllVl'rling them into ,1 

series of tone'> to tht> BPII standard at \00 baud. 
The tones are thl'n s<:'nt down the line l'ither via an acou,ti< couplt·r lu,uallv 

part of the modem unitl or d tr,11hiormt'r straight on to the phonl' lim •. It i" 
important to nott' here th,1I British lt;lecom do not like you ,111aching "lr,111g<' 
devices to the telephone linP , and JII sll(h ckviu•, requirt' typt ' ,1pproval. The 
penalty for not observing this requirnnent is twoiold: you risk damJging 131 '" 
equipment (for which they will detest you forever); alternatively, they might visit 
you one day and rip out your modem just like they do illegal extension 'phones. 
However, there are devices which have BT type approval, and you will see them 
advertised from time to time. Many modems have a large range of facilities , the 
most expensive offering such things as automatic dialling. Such expensive 
complexities are fine if you have the time and the money to find them. But 
whatever type you obtain, this solves your first problem: attaching your system to 
the 'phone line in such a way as to be able to talk to other machines in an agreed 
standard fashion. 
The terminal 
The second problem is exactly what you attach to tlw modem, and what ii h,1s to 
do. In its simplest form, all you need is a terminal which can oreratl' al lOO baud 
into your modem. Most of us, howevPr, want a little more: nJmcly, somt' form oi 
intelligence, and storage caµability. It i~ J little tedious to copy sornl' kind oi 
program oif the screen oi a terminal and into your machine , when your machine 
could do it by itself just as well! So what we need is some w.iy oi making our 
computers into ' intelligent terminals'. At least one US manuiaclun•r, Micro­
Interface, offers software to do this for tht> Superboard: its ROMTERM ,oftwart' 
(in two versions, for Series II Superboard and for disk-based "y,teIw,I is being 
marketed as Starlink by MutPk. This software makes your system largely 

17 

• 



,,. 

compatible with many oi the Cl38~ in tlw State, , and no doubt British ;,y~tPm~ 
(including our own, about which more laterl will hl' organi;,ed along similar lines , 
with similar protocols . Tlw other alternative is to write it yourseli . 

Terminal software 
Before designing software of our own , wt' should define what wt' <'Xpect it to do. 
At the basic level , the system should bt> able to allow typing at the kl 'y board to be 
sent down the line , eithpr displaying tht> tt •xt on the !->C'rl't'n a;. it is typed 
(half-duplex) or displaying the text a;. it is 'ct hoed ' bat ·k by thP m,Hhirw at the 
other end (full duplex). As different systems and modems use one or the other, 
our software should be able to handle both; this is simply a matter of printing the 
character as it is sent for half-duplex , or not for full duplex operation. It may be 
useful to be able to alter the baud rate : although 300 is normal , you may 
encounter other speeds . The 6850 ACIA in OSI gear enables the baud rate to be 
software-determined to a fair extent. 

The system must abo be able to rccPiVt' data from the CBBS computPr , l'Vt'n il it 
responds while you are typin,i; (if you arp running full duplex it will certainly haw 
to do thi;,! ). There art' two basic approachl'~ to this : either your ,oftwart> musl 
look at the ACIA ' between ' characWrs from the keyboard to see if something is 
coming in, as part of the main routine (this can be sluggish , a;. most of the time 
nothing will be happening; although in machine-code it is not loo great a 
problem); or you can make use of tht> fact that the ACIA has an intprrupt handler 
which can be hooked up to divPrl tht> computer into a ·receive ' routine when 
necessary . We will consider this approach ht>re, as it is quite easy and giws you a 
chance to try out those rusty interrupt vectors! 

As well as talking and listening , thP system should bP ,1ble lo download a 
program from the CBBS machine, store it in memory or on di,k ,cassette , and 
recover it later . This is more complex than simply what we might call TB Mode' 
and we will not consider it in this arlicle. For disk users , a good plan' lo qarI i, by 
using the Indirect File system lo get the downloaded program 'out of the• way ' as 
an ASCII file in memory so that you can call it inlo the workspacp and ;,aw it later 
at your leisure. ROMTERM also does this for non-disk-based C1 users and the 
concept is quite straightforward. 

Another feature of our software could bt> to allow the machin<' lo , end your 
own programs to the CBBS machint' for other users. If it can '•t do this , you will 
have to rely on software supplied by the CBBS it;,t>lf , thus neglecting onl' aspect of 
the system which is most fascinating: that of exchanging program;, . But , for now , 
we will hold a discussion of this over for a later article. 
A starting point 
We will now consider a minimal systPm which we can use as the basis of a more 
complex CBBS communicator . Hopefully some read e rs will be able to expand on 
this in later issues (hint 1 ). The basis of this approach is taken from a useful article 
in the excellent American computer magazine, Microcomputing. In their May 
1981 issue (p.208), James C. Daly describes the basis of a terminal routine for the 
C1, and his article (and the magazine in general) can be heartily recommended. 
Interrupts 
The central part of this approach revolves about the use of the IRQ (Interrupt 
ReQuest) facility of the 6502, and the fact that the 6850 ACIA has an interrupt 
handling facility which can be used to force the computer to 'listen ' when data is 
trying to come in. There are in fact two interrupts on the 6502: the IRQ, which can 
be screened off and ignored by the processor if desired, and the NMI (Non 
Maskable Interrupt) which can't. The latter is generally used in large systems to 

18 

··-'" \ 

,, 

"'-

call up an emergency routine in the event of a power failure. A sensor is used to 
detect a nasty on the mains (eg it is disappearing or fluctuating in disturbing 
ways). When this sensor operates, it holds a line low, which is connect ed lo the 

• NMI pin on the processor. The NMI cannot be ignored, and tells the processor to 
,_ 1 stop what it is doing and vanish off to some predetermined location (lhe NMI 

Vector tells it where to go to: in our machines it is usually sent to $0130) where it 
finds a special interrupt routine or program which generally saves the important 
aspects of the main program in, say, memory which has battery backup , thus 
enabling you to continue from more or less where you left off when the power 
has returned. 

The IRQ is similar in toncept , in th,1I whl'n ,lttivated ii fore<', .i jump IL"u,1lly to 
$01C0 in our machirw,l at which location ii i, told wh,1I to do . I ht• diift •rt •nt t ' i, 
that one of the proce;,;.or flag, (the lntprrupt Ma,k ilag I , tonwniPntlv t'nough l 
tell;, the proces,or whether it is lo go off and st'rvice the inlt•rrupt or ignort' it 
altog ether. When this flag is cleared (with the CU in,lruclion), thl' rroc c·,,or \viii 
service an Interrupt ReQuest when it sees one. When it i, set (with the SEI 
instruction) , the processor ignores any IRQs that might be presented to its hot 
little pin. You will noti ce that this flag works in perhaps the opposit e way to 
th at which you 'd expc•tl : thi, i, lwc,wst' iii~ rt•ally an interrupt nr.1.,k ;i,1g: wlwn 
the flag i;, sel , an intprrupt i, masked , it• ignort•d. ~or lhi, rca,on . lhe Ni\\l i, ,1 Non 
Maskable Interrupt: in other words . llw prott'ssor tannot ignort' it . howc •vt·r 
boring and tedious thp 6501 ' ;, ,ilium intPlligc•ntt' might find thl' intl'rrupt routine· 
(if you 'll pardon my anthopomorphi,ml. Here Pndt•lh lht' tutorial on inll'rruph . 

A little hardware mod 
Before going any further , Wt' nt•ed lo perform .i littll' harclwarl• modification. Hui 
before vou run away in di,l.!'"t, I -.hould tell you that all that i, requirl'd al till' 
minimum is a single piece of wire. You don ·I cvl'n need a ,oldt·ring iron unit'" 
you feel like it. 

When data is recPived by thP ACIA , it sends ih interrupt request pin lpin 7) 
down to ground potential. Normally this is mcaninglt•,, to OSI machine·, bt •c au,t · 
pin 7 doesn ' t go anywherl' . lake ,1 ;,uitablt ' piece of wire and connc•c t pin 7 of lht' 
ACIA to the IRQ pin (pin 4) of the 6501. You can do thi, citht>r by ,luffing tht • Pnd, 
of the wire into the IC ,ot kt·t npxt to tht• corret t pin , or you c,111 ;,oldl'r it via d 
switch to the underside of the board. Note that howevl'r you do it you should lw 
able to remove the wire or di;,abll' the interrupt lint' (with the swilc h ) wht•n you 
don ' t need the facility. Othl'rwi;,e ,trange things may start to hdppl'n whc•n you 
are trying to load program;, from cas,elte. For Supt>rboard or Cl ust•r, , you may 
find it useful to push the wire from pin 7 of lhe ACIA (U14) inlo pin 1 of )1 , the 
expansion connector. Thi~ pin carries tht> IRQ line to the proce~sor with no 
unpleasant bending. 

·Apart from implemPnting the RS2Q porl on your mathine if it i~n ' t alrt•,1dy 
there, this i;, all thP hardwarl' modification that you rwed to do for this 
application. It is worth noting ht>re that while lhc RS2 l2C standard ~l.ilt', that the• 
serial data should swing between about +5v (logic '1 ') and - 9v (logic 'O' ) , som_e 
modems only require the logic 'O' voltage to drop to zero , and not to - 9v . If thrs rs 
the case with your modem, you will not need to implement the negative supply 
rail on the RS232 interface: it can be grounded instead . This may save you extra 
bits of power supply. 
The program 
This basic program i;, in mac hint> tode (no pun intended: I mean 'ba~it ' in th e 
sense of ' ready to be expanded upon ' ) a;. the interrupt mask i~ diffirnlt (otherwise 
known as 'impossible ' ) to handlP irom BASIC, although you could u~c a BASIC 

19 

a -·-- -·-. - -



-~ 
' 

driver program to get you into it, either using a USR(X) to call the program from 
BASIC, or by executing a CALL to the start of the main routine if you have the new 
BASIC 1 chip. It is simplest, of course, simply to load it and execute it with the 'G' 
command from the monitor (or 'GO' from the DOS kernel). It is written in 
assembly language to give you practice with that funny tape you bought the other 1f"' , 
week called the Assembler , or that weird DOS command called ASM. More ,,,;, 
importantly, assembling it yourself not only gives you practice (it is small, and can 
even be hand-assembled) but also means that you can stuff it into memory 
anywhere you like. 

The program has two parts. One sets up the ACIA , gets a character from thE' 
keyboard, and throws it out of the ACIA , while the other is a program called by 
the interrupt, which gets a character from the ACIA and displays it, checking to 
see that there are none left before returning to the input routine . You will note 
that the latter program section has an RTI instruction at the end: this tells the 
computer simply to ReTurn from Interrupt servicing - it's rather like a special 
kind of RTS, which returns from a special kind of subroutine which ha~ a 
hardware-forced interrupt instead of a software-commanded JSR. 

The two programs may be described like this : 
'Send' routine 
1. Clear interrupt mask on processor 
2. Reset ACIA 
3. Set up ACIA for desired baud rate, define word length and parity , and enable 

ACIA interrupt 
4. Get character from keyboard 
5. Save character on the stack 
6 . 
7. 
8. 

Read ACIA status register: wait until transmit data register is empty 
Pull character off the stack 
Send character to ACIA 

9. For half-duplex, display character on screen (omit this step for full duplex) 
10. GOTO step 3 
'Receive' (interrupt) routine 
1. Disable processor interrupt (set the flag) 
2. Save registers on the stack (so the status of the ·send' program isn 't lost) 
3. Get character from ACIA 
4. Display character on screen 
5. IF there are more characters to come, then GOTO step 3. ELSE continue 
6. Pull registers off the stack (ready to return to ' send' routine) 
7. Enable processor interrupt (clear the flag) 
8. Return to 'send' routine 

A point should be made about step 3 of the 'send' routine . The 6850 ACIA can 
support a number of different baud rates, via a programmable on-chip divider, 
and can also send and receive data with different numbers of bits/word, stop bits, 
and types of parity. The standard for OSI i~ 8 bits word length , no parity and two 
stop bits, and 300 baud is achieved by dividing the clock by 16. This specification 
is achieved by stuffing $91 into the ACIA's Control Register. To give a 300 baud 
output and interrupt enable, this and other combinations are given below: 

20 

,,. 

'. .• t 

. 
t 

,, n' 

Contents (hex) Word length (bits) Stop bits Parity 
81 7 2 even 
85 7 2 odd 
89 7 1 even 
8D 7 1 odd 
91 8 2 none 
95 8 1 none 
99 8 1 even 
9D 8 1 odd 

The 6850 has two memory addresses: the lower of the two is the address to which 
the Control Register is written, and where the processor can read the Status 
Register, which tells it whether there are other characters to send or receive; 
while the higher of the two addresses is the data register which may be written to 
(for sending) or read from (for receiving). The ACIA is located at $FOOO/$F001 
(standard C1 and UK101) or $FCOO/$FC01 (C2, C4 etc); non-standard format 
monitors may have them placed elsewhere. These addresses should be inserted 
into the routines as appropriate. 
Send routine 
10 
20 
30 START 
40 
50 
60 NEWCHR 
70 
80 GETCHR 
90 

100 CHECK 
110 
120 
130 
140 
150 
160 
170 

*=$(start location) 
ACtA=$FOOO ; $FCOO for C2 etc (ACIA address) 
CLI ; Clear interrupt mask 
LDA #$03 
STA ACIA 
LDA #$91 
STA ACIA 
JSR $FFEB 
PHA 
LDA ACIA 
LSR A 
LSR A 
BCC CHECK 
PLA 
STA ACIA+1 
JSR $FFEE 
)MP NEWCHR 

Reset ACIA 
Set up for 300 baud, OSI standard (change if required) 
and enable interrupt 
Get character from monitor keyboard routine 
Save character on stack 
Get ACIA status 
Check bit 1 of status register, 
if clear, 
try again (check last char has been sent) 
Get character from stack 
Send character to ACIA 
Display char (half-duplex only) via output vector 
Do it all again 

Receive (interrupt) routine 
180 RECV SEI Set interrupt mask 
190 PHA 
200 TXA Save processor registers on stack 
210 PHA 
220 TYA 
230 PHA 
240 NEXT LDA ACIA+1 Get character from ACIA 
250 JSR $FFEE Display character via output vector 
260 LDA ACIA Read ACIA status 
270 LSR A If status bit zero=1, (i.e. more to come) 
280 BCS NEXT then get another character 
290 PLA Otherwise, restore registers 
300 TAY by pulling 
310 PLA off the stack 
320 TAX and transferring 
330 PLA where necessary 
340 CLI Enable processor interrupt again 
350 RTI Return to 'send' routine 
360 
370 *=$01CO System interrupt vector 
380 IRQVEC JMP RECV Set up IRQ jump to 'Receive' routine 

21 



Note that this program utilises two monitor routines: the keyboard routine 
(accessed via $FFEB) and the display driver (accessed via the output vector at 
$FFEE). The use of an interrupt routine for received data means that the normal 
keyboard routine ('wait until a key is pressed') will not cause loss of data as an 
interrupt can bring in received data even while the keyboard routine is waiting for 
input! 

What you can do now 
Implementation of the above routines (added to if necessary) plus the required 
hardware can bring you all the benefits of CBBS access, if you can find one to use, 
or a direct line to other users. As it makes your machine pretend to be a terminal, 
you should even be able to access a CBBS designed for other machines with this 
program - the programs on such a system may be of little use to you however! 
To remedy the problem, we are considering starting up a User Group CBBS, using 
a multi-user C3 and a handful of telephone lines. We'll keep you informed as the 
system develops. There is still a good deal to be done to get such a system 'on the 
air'. The database of interesting information is one problem, but a more 
immediate one is to define protocols which will suit the majority of users. The 
system will need to be able to ask what machine is in use and set itself up 
accordingly to send 'pages' of the right screen size, with the right formatting 
commands to suit C1s of both types, UK101s, serial systems and C4s, and will have 
to send out, for example, the right screen-clear commands to suit different screen 
handlers (eg CEGMON). This will take a great deal of time and effort, and 
anything readers have to suggest on all aspects of the system will be welcomed. At 
the moment we envisage some kind of password and identification 'logging in' 
system, which will recognise User Group members and give preferential rates for 
access (obviously the thing will have to pay for itself), but it is early days yet. Quite 
obviously, CBBS are the systems of the future, and we expect the system to 
develop as time goes by . In these early days, however, we need as much help with 
ideas as possible, to provide another service to User Group members. 

REVIEWS 

Expansion board from Elcomp 
New from Elco mp is an expansion board with a difference: it plugs into the 40-way 
expansion socket on a Superboard or UK101 and provides on S-44 card slot and, 
wait for it ... four Apple-type SO-pin slots. While you can't use Apple cards which 
rely on dynamic RAM refresh, the Apple monitor, or the language card system, 
there are still a large number of boards which can be used. Elcomp also offer a 
range of Apple-style cards for prototyping, 1/0, EPROM programming, EPROMs, 
12-bit ND, sound generation, and other purposes. As is typical of Elcomp, the 
prices are not incredibly cheap. The Elcomp-1 expansion board (order number 
606) costs $49.00 for the double-sided PCB and instructions only - you still have 
to buy the components. Elcomp can be contacted in Europe at PO Box 75437, 
D-8000 Munchen 75, West Germany. 

22 

,,.. 

/' 

.. 

,· 

Word Wizard, Codekit and BASIC 5 

These three programs are some of the many utilities currently marketed by 
• ,Premier Publications. Word Wizard is a machine code word processor, Codekit is 

a single line assembler/disassembler, and BASIC 5 is an extension to BASIC 
providing 17 new commands. Premier Publications' software is designed 
principally for the UK101, but versions for the Superboard and other OSI 
machines BASICs are available from them. 
Word Wizard 
Many of our members aspire to have a good word processor to run on their 
machines. Almost certainly they neither want nor need the business type, mostly 
used to write the canned letters that the M and other organisations send you. 
They (our members that is) also have to contend with a limited amount of 
memory, so programs with unnecessary features simply reduce the amount of 
text space left for you to use . The Word Wizard, written by N. Davies , neatly fills 
this gap. 

To use this program you load your text from tape or type it in, only using the 
return key to terminate a line when this is necessary for the text format, for 
example at the end of a paragraph. The program uses its own keyboard routine, 
so the vices of SYN MON (if you are still running it) do not have to be contended 
with. At any time the cursor may be moved back non-destructively to any point, 
and text may be inserted or deleted at that point. The cursor may then be moved 
forward or moved directly to the start of text using one key stroke. A very good 
feature of this word processor is that the screen can scroll both ways, either on a 
line by line or on a page by page basis, so that the screen acts as a true window on 
memory. To help format your text, right margin justification of a line, and 
centering of a line are achieved by typing the appropriate control code in front of 
the line concerned, while Tab, Space and end of page functions are also 
provided. 

Blocks of text can be moved or copied from one place to another, and a global 
search and replace function allows you to search for a string of up to 48 characters 
and replace it, if desired, with another. This allows you to use shorthand codes for 
frequently occurring phrases or words, aids you to correct spelling errors and the 
like . I have also found it very useful in writing BASIC programs, as the program 
can be heavily compressed, relieving one of much of the typing , and helping to 
ensure correct syntax, getting the PRINT statements to line up etc. 

At any time, the text can be stored on cassette, and when required output to a 
printer complete or from the cursor position. The processor will format the 
output on printing, and even justifies the right hand margin of the text to the 
desired width by adding extr_a spaces unobtrusiv~~y i~ the li_ne. These functions 
make no demands on the·pnnter used, but a facility Is provided to pass control 
codes to the printer if required . 
Codekit 
This is a very useful program to help those of you interested in machine code. The 
program, which is entirely relocatable within the memory map, includes a single 
line assembler which allows you to write machine code in mnemonic form instead 
of having to convert to hex, although as it only works on one line, labels cannot 
be supported in the same way as a 'standard' assembler. Operands can be stated 

• in either hexadecimal, decimal, binary or ASCII form, and branches reql.Jire either 
the absolute destination address or its displacement from the branch as an 
operand. 

23 



I[ 

ii 
·;1; 

11 

A disassembler is also provided, which either decodes seven lines of a code at a 
gulp for screen viewing, or will disassemble a complete block for output to the 
RS232 port for printout. A facility exists for moving blocks of code by 127 bytes in 
either direction, so that you can make room for those extra bytes that proved 
necessary. Although the assembler has limitations for extensive machine code 
work, Codekit is a useful way of creating relatively small machine code routines 
linking into BASIC via the USR command. As Codekit is compatible with BASIC, 
you can move from one to the other without having to resort to cold starts and 
possible program loss. As Codekit is only 2Kbytes long, enough workspace is left 
to make this a practical proposition on an BK machine. 
BASIC 5 
This program, written by P. Rihan, is a 2 Kbyte extension to OSl's versions of 
Microsoft BASIC and is available to work with either ROM or disk BAS I Cs. 17 extra 
commands are provided in addition to all the usual ones, and the extension is 
done so that BASIC is not substantially slowed down and the stack's integrity is 
preserved. This means that there are no limitations as to the use of the new 
commands (certain methods of extending BASIC can run into trouble if the new 
commands are placed in a FOR ... NEXT loop or a GOSUB) and the appropriate 
BASIC error message is generated should an error occur within routines using the 
new functions. All the new commands are prefixed with an '&' and are divided 
into three categories. 
General commands 

GETkey - this much needed command is non-halting and allows you to get 
characters from the keyboard, returning a null if no key is pressed. 

GO xxxx jumps to a machine code subroutine at xxxx which address may be 
expressed in decimal or in hexadecimal (at last!). 

GT and GS are commands which allow you to GOTO or GOSUB a variable, very 
useful in menu selections and the like . 

RDxx<VAR will read down xx DATA statements and put the next item into the 
variable VAR. 

INAT and PUTAT allow the input and printing of a string of given length (the 
string is truncated if an overflow occurs), from any position on the screen that 
input statements can be executed without messing up graphics. 
Formatting · 

A PRINT USING command is provided with its associated image command. This 
allows extensive formatting of text fields to both screen and printer, it will also 
truncate numbers or text, align decimal points etc. 

WI and CWI are for CEGMON users and will allow them to set up and change 
screen windows anywhere in memory. Decimal or hex arguments are permitted 
in this most useful feature. 
Graphics commands 

SCR will fill the screen with any character - fast. 
BLK will draw a block of any character on screen - also fast. 
VLIN and HUN will draw horizontal or vertical lines of any character on the 

screen. 
SET and TEST allow you to put a character on the screen or to find out what is 

there. 
All the screen based commands use row and column arguments with the origin 

set at the bottom left hand corner to set the screen locations and are fully error 
trapped so that you can only write in the area defined by the current screen 
window. 

24 

,,.. 

,,, 
; 

' 

-'l 

The above brief description of the functions of BASIC 5 will, I hope, give the 
reader some impression of the dramatic extent to which the problems refating to 
formatting input and output in BASIC have been resolved. 

All the above programs are sold by Premier Publications on cassette, disk or in 
EPROM. In EPROM they are available on switch on ; of course, and form part of 
Premier's TES system. The instructions as to their use are adequate, and give 
examples of each command, and Premier have learned a reputation for being 
helpful to any client who has difficulty in using any of their products. 

Premier Publications' BASIC 4 
Reviewed by Richard Elen 

No sooner have Premier released P. Rihan's BASIC 5 to the world than they come 
up with yet another goodie! Premier are fast establishing themselves as the best 
source of utility software and firmware for our machines, and BASIC 4 represents 
another string to their bow. 

Primarily by throwing away ROM BASIC's announcement messages and a . .few 
bits of redundant code, BASIC 4 is able to offer a full set of commands for SAVEing 
and LOADing prograrl)s at a greater speed than normal, and with file names if 
desired. The speed enhancement is obtained by using a method of saving the 
bytes directly, rather than LISTing the program in ASCII form onto cassette . Time 
savings of up to 33% can be obtained by this approach, which is similar to that 
used by the PET and other machines. The original SAVE and LOAD commands are 
retained, so as to provide compatibility with existing tapes and other, less 
fortunate users; the only disadvantage of the byte-load format being _that 
'automatic merging' of programs is no longer possible. To do this you still have to 
have your programs recorded in the normal way . BASIC 4 additionally incorpo­
rates an indispensible ' 'crash-recovery' command, OLD, which allows you to 
cold-start and recover program pointers if you 've inadvertently POKEd vital bits of 
BASIC's page-zero locations . 

Installation 
It is very easy to fit BASIC 4 into your machine : normally you will have a ROM in 
the appropriate hole in your board, but if you've already replaced BASIC 1 and 3 
with unmasked versions with CALL and a 'fixed' garbage-col1ector respectively, 
the procedure will be well known to you. You simply bend out pins 18, 20 and 21 
of the new BASIC 4 EPROM, fit it into the BASIC 4 socket on your board, and 
connect up the pins, pin 18 going to ground, pin 21 to +5v, and (on a Superboard) 
pin 20 to IC 17 pin 4. The whole process takes a few minutes at the most. 

Powering up 
On powering up and cold-starting, the familiar 'Memory Size?' prompt appears. It 
is at this point that you type OLD if you are trying to recover a program . 
Answering in the normal way drops you straight into BASIC: 'Terminal Width' and 
the BASIC start-up message have been absorbed to provide room for the code. Of 
course, POKE 15 still changes the terminal width, which is probably how you did it 
anyway, and of course, you leave it alone if you have CEGMON (the _operating 
instructions kindly point this out). At this point you are now in for a surprise: 
BASIC 4 supports Rihan's BASIC 5, and if you have it it resident, any key pressed 

25 



t 

after cold-start will produce the 'Ready' prompt instead of the original 'OK', 
telling you that BASIC 5 has been initialised. 

Once in action, BASIC 4 primarily adds a new set of SAVE and LOAD 
commands. These are as follows: 

SAVE is simply the normal command for saving to tape: there is no chan,ze in 
any respect to the normal. SAVE "filename" saves a program in byte-format with 
the specified filename. LIST is not used, and the program is not displayed on 
screen. The BASIC prompt announces the completion of the operation. SAVE" (no 
filename and no closing quotes) saves a program in byte-format without a file 
name: in other words you can't get it back without the corresponding command 
to load a byte-format tape without a filename (LOAD "). Premier describe this as a 
useful way of preventing illegal use of a program, but I suspect that if you had 
BASIC4 you would also know about LOAD " as well! 

The simple command LOAD , once again, loads a program as normal : no 
change . LOAD "filename" loads and auto-runs the program named . If other 
filenames are encountered on the tape, their names will be displayed but they will 
not be loaded . A loading error is indicated by the word BREAK and the BASIC 
prompt. This command clears the workspace before loading. LOAD"filename 
(note lack of closing quotes) clears the workspace and loads the named program 
as above, but doesn't auto-run it . Similar syntax applies to the LOAD" " command: 
it loads the first program encountered and runs it. Missing out the second quotes 
character loads, but doesn't auto-run the first program found. Useful, both of 
them, if you've forgotten the filename. 

In fact, as the system loads and saves quite happily at any speed up to 4800 baud 
(the highest I tried), you could end up with a tape full of programs and dozens of 
filenames (each up to 32 characters) to be forgotten: a tape directory is a good 
idea. I found a neat way of doing this, by typing LOAD"filename " where 
"filename" is something non-existent. Running the tape then lists all the 
filenames on the tape. If you note down counter readings at the same time , you 
can then use CEGMON's screen editor to call the names off the screen into a 
program whose line numbers are the corresponding tape-counter readings. For 
example: 

1 ?"Directory for tape no . 2, Sept 04 1981" 
7 ?"FILE 1 
11 ?"FILE 2 
... etc. 

SAVE this program under the name 'DIR' (e.g. leave room for a big one at the 
front of the tape), and then type LOAD"" before trying to find the program and up 
comes the directory. This is very fast! 

Another command which is most useful is LOAD?". This is a 'verify' command 
which compares a tape copy with the resident BASIC program, forcing a BREAK 
and BASIC prompt to be printed in the event of a bad comparison. 

The final, and very useful, command in BASIC 4 is OLD. This , typed in response 
to 'Memory Size', resets BASIC's pointers to look at a program which has been 
accidentally lost by inveterate POKEing into page zero, the stack, or page 2. It will 
not help you if you've overwritten the program in the workspace, of course! It is 
worth noting, however, that occasionally a program will crash again when you try 
to run it after recovering with reset, cold-start and OLD, so it is worth SAVEing it 
first. Often this is the result of having a POKEd variable assuming an unexpected 
value, so, of course, it will crash itself once again the next time you try. SAVEing 
the program first allows you to take the extreme measure of a complete cold start 
if something really odd has happened. 

26 

,,.. 

.• 

J 

Conclusions 
All in all, BASIC 4 is a worthwhile addition to a cassette-based machine . At a cost 
of only£ , it will hardly break the bank. The added SAVE and LOAD'commands 

; are most useful and fast, especially at 4800 baud, and although the inevitable loss 
of the ability to append programs in this mode is a pjty, it matters not because of 
the continued existence of normal LOAD and SAVE. Indeed, I wonder if it might 
be possible to write an append routine to patch it in: without looking into the 
code more deeply I wouldn't know. The routines in BASIC 4 are sensibly and 
economically written, and use a severely limited space most effectively, providing 
facilities which many users have been after for some time. I believe I also noticed 
some clever diversions in the code to detect illegal copies, and there also appears 
to be a unique chip ID in case anyone was selfish enough to try. The single AS 
double-sided instruction sheet is concise and clearly understood, and the 
installation instructions are quite sufficient. A useful product which fulfils a 
long-unsatisfied need. 
Premier Publications, 12 Kingscote Road, Addiscombe, Croydon, Surrey. Tel : 
01-656 6156 

..,. 

-

One important point to note about BASIC 4 - and this isn't in the manual - is 
that it requires CEGMON to function. It does not include the old screen handler 
at $BF2D (this, too, has been removed to make room for the new code), so it 
requires CEGMON's screen handler to operate at all. It should also be noted that, 
as a result, machine code programs which start below $0235 must be relocated or 
otherwise dealt with, as the OLDSCR location in CEGMON will not be able to call 
$BF2D when the output vector is pointed at it, thus removing the capability of 
running such routines unchanged under CEGMON. This fact is a nuisance and a 
great pity, but understandable in view of the room needed for the new functions 
in BASIC 4. 

32X64 Display for Superboard II 
}. R. Fornalski 

The following _ article describes a method to obtain guard bands for the 
Superboard II and is an addition to the modification published in Vol.1 No.2. 
However, we feel that it will be possible to implement it on computers with other 
video modifications, including the new Series 2, with some extra circuitry. This 
circuit is a distant relative to the one suggested by Dr. Abbott in Vol.1 No.4. 

Note that throughout the article we are using ICxx to refer to a chip on the new 
board, while those on the computer are referred to by Uxx, as in the circuit 
diagrams. 

27 



I 
f.: 

How it works 
This modification provides a continuous clock for the processor at the selected 

frequency via U29, and stops the clock driving the counter chain during the 
period of line blanking. Using a 12MHz crystal allows adequate guard bands for 
the television, while providing a line frequency of 15,525.644 Hz. The clock to the 
ACIA, which is derived from the counter chain, has a very small jitter which is 
averaged by the ACIA's divider, and the rate is now closer to 300 than it was 
originally. 

If the data blanking is high IC2 is disabled by its RO line (See Fig 2). A negative 
going edge from the line reference to U65/9 (CB) triggers IC4 whose output is 
gated with inverted load pulses to set the latch fromed by part of ICS. This pulse 
corresponds to the "65th." character . The latch sets, making data blanking go low 
and stops the clock to the counter chain while enabling IC2. IC2 produces a 
travelling logic Oat the outputs of IC3, which is used to a) delay the lin e sync pulse 
and b) generate the delay while overscan takes place. When this pulse reaches the 
" line trigger " (fig.3, wire E) U65 generates the line sync pulse. The "travelling O" 
continues until the output selected by " line frequency adjust" (fig.4 , wire D), 
resets the latch (ICS). This resets data blanking to a high and restarts the co unte r 
chain. The process then repeats. 
Parts list 1 X 7492 

2 X 7493 
1 X 74154 
2 X 7400 
1 x 74LS121 
1 x 12MHz Crystal 
2n2 cap; 12Kflresistor; matrix board, Vero pins etc. 

LS versions of the above chips may be used , but check the pin-outs , especially for 
the counters. 

Build the circuit shown in fig .2. A suggested layout for a matrix board using 
Vero-wire techniques (as used in several conversions) is shown in fig.3. It is 
suggested that vero-pins be used to facilitate access to the input/output points on 
the board . 

Initial modifications 
Refer to fig .1. On the underside of the board, cut track 'A' near PTH A isolating 
the processor clock line (to U8/37). Join track A to U30/14. This will run the 
processor at 2MHz. Turn on the computer and check that all functions still work . 
If they do not it is likely that either the RAM or EPROMs, rarely ROMs, have access 
time problems . If this is the case, either weed out the offendif18 device s and 
exchange them, or settle for a clock speed of 1.5MHz or 1MHz at which few 
problems should occur. 

Replace the crystal X1 for the 12MHz one. Remove the link from tra ck A to 
U30/14, and connect track A to U29 as follows: 
speed 
2MHz 
1.5MHz 
1MHz 

join 
track A 
track A 
track A 

to 
U29/8 
U29/11 
U29/13 

comment 
use 7492 as U29 
join U29/2,3,10; use 7493 as U2~ 
join U29/8 to U29/14; use 7492 as U29 

Check that the computer still works. The screen display will not make sense, but it 
should be possible to see the screen clear when BREAK is pressed. 

28 

,,. 

, . \ 
/ ~ 

/ 

.I 

Connecting the new board 
Refer to fig.4 and locate W9. Cut the link between points Band C. Note that point 
C leads to the counter chain, at U30/2. Remove U65 (74LS123) from its ,socket, 
bend out pin 9 and replace it. 

join to (new board) comment 
U65/9 (track) IC4/3 line reference (C8) 
fig.1, pt.A IC1/14 Processor clock (0 0) 
U65/9 (pin) IC3/4 Line trigger (2MHz) 
U65/9 (pin) IC3/3 Line trigger (1.5MHz) 
U65/9 (pin) IC3/2 Line t'rigger (1MHz) 
fig.4, pt.B IC6/1 12MHz input 
fig.4, pt.C IC6/3 Gated 12MHz output 
U42/1 ICS/4+5 Load pulses 

All leads should be reasonably short in view of the frequencies involved . Check 
the computer at this stage. A picture with 64 characters /line should be displayed 
and the computer should operate normally . However, as blanking has not yet 
been applied , certain characters may cause the picture to streak. 
Blanking 
Locate U59 (7420). It is necessary to cut the track leading to pin 12, which, as luck 
would have it, is only accessible under the chip. The easiest solution is to cut pin 
12 just above the surface of the board, bend it out and connect it to IC51/8 on the 
new board . This completes the modification to the Superboard II. 

Adjustments 
The timing on monostable IC4 seems fairly flexible. For maximum symmetry (T3) 
may need alteration. This is a selected output of U43. 

The picture position may be shifted slightly by the "line trigger" wire E; the line 
frequency is·affected by wire D . 

It should be easy to adapt this modification to work with other video 
co nversions to the Superboard with little difficulty, although care will be needed 
in the region of U29. It is important that the cassette interface is driven from the 
interrupted clO{:k line, otherwise its rate will be incorrect . Owners of the Series 2 
Superboards should 'De able to achieve 32x3 2 or 16(!) x 64 by adapting it. The 
majority of components on their machines are labelled as in the older versions, so 
that most of the instructions will apply. Here are some points which will have to 
be dealt with (these seem obvious but have not been tried out) . If a 12MHz crystal 
is used, the frequency doubler formed by U79/4, 5, 6, 8, 9, 10 must be disabled. 
W9 (fig. 1 points Band C) might be emulated by removing U79, bending out pin 8, 
and re-inserting. U79/5 would then act as a source of the 12MHz clock and U79/8 
socket would provide access to the top of the counter chain corresponding to 
point C. 

A divider would have to be added to provide the processor with uninterrupted 
clock pulses. 

The line trigger referred to is not labelled CB but is still accessible at U65/9. 
As U56 does not have spare inputs on this machine, spare gates on IC6 could be 

used to gate (T3) and DB, the inverted output bein"g fed to U56/13. 

29 



1: 

\ 

30 

.,, 

f",·~ I. 
\Jl"IJ.er~1i:Ae.. o F Boo.rt!. 

71f-CU 
C +-(o 1 - J/'1Hz 

'uzq 1 
t: .J 
C: •••·· l __. I M "z \A3C'> 

c- ... .-·· J 
c.-..! * :I 

ll Mlh -4 ( ;:i 

I t'l I l't "Tr'-GtcJc A 
/ fl OPT)( A 

to U g / 37 ~ ~ 0 

l 
KejbMm..-

~ TF u2q is 74q3 L,nk plk, J, 3, ,o. 

?roe 
((eek 

,., 
.:.+ 

4- t• ti, L .. ,._ 

'J>••r.~ •'"\""'"' •~• •,. I "U•~f••t••"~' 
1'-,ti·"~ .,.,-- "'~J••t . 

T Lh14-
-f .. ,jl..,. 

,~· r-,m_ 

cs 

12f1wa 
IIlIIlII 

T 

f1<:3 2. B,-s,c. BLoc.K D,1111G-ro11r,. 

~ ~ 
\0 , ~lJT 12Ml\z. f' or ~ f3 clDck 

Col.ll\\:er 
cho1n r-C WO.., OVJ\IA~Gl 

~J 
cloc.k 

I - 'J).t. 
~ Bla,,I,~ 

I Kejboanx 

F,~. 4-
! u 4-, \ f U4-4-\ 

, .... 

., 

'/ 

f13-3 

74 '.3 74'1'3 741 ,4 
1 ... c. 

C u J~ 
C• I c f f '" 1. +~~'~1L• ~ij,!PlLab!!l ... ~ :i-cl.-JIII ) ~ 

[ :J_LJ I ~~~~ r----:] 
/ . J 

] 

,J;'_1/~_J "H '(_tttYYt't:i. \.e?' 

( v ti<' JJ/1, I ZM ML ' ~ .~i n•f•• CB c •. r] ~ V 3 l H ~ L," ... T.~··:: ~Jj ••' 

✓ "'ij'..J ' j:::}.r' " ,:r " 

~ .. ' ~ f J D J c'l ~ .J:!- J C }-- c l 

74L~l 2.J 

1 [ J 

, rC ] 

Lo.J >' ,,I,,. '
0 

at_;:, Cl"':\( c.~~'" 
74L ~OO 7 4l 5,0O 

Vtoc Cloe\< - (rom (o'5f51 pin 3 7 
C ~ - ~om t ro.ck b( lJ Co'5 ( p1ri ~ NDf£ 1 

Loo.d. · froM U4-?. pin \ 
Da~a f)lank - tb lJ StD pin 11 ()lo ,£ 2. 

C\ock (hO.ln - lo w q NDTc: 3 

12 tJ\1-\-z - frol'Y' W 9 
Line frgq,u.eric~ AdjV-~t for I la· Cc2 5 k c/ ri ND1€ 

L1rt,e, Tr100er-Acij1,1. <J. for ce ntr-a\ Dtspl~ p oi1ti6 

Subsequent trials on modifying a Series 2 SuperboiJ.rd indicate that the 
mo dification is not quite as straightforward as was first thought. A promising line 
of research indicated that both screen formats should be possible if a 
re tr iggerable monostable (74123) is used instead of the 74121 on the new board . 
Wo uld any member successfully modifying a Series 2 please supply us with 
'etails. 

J> Readers should note that 1.5MHz operation will prove difficult with disks - the 
data AC/A's clock is derived from 0 2 and NMHz software only supports operation 
at 1, 2 or 3.3MHz- Ed. 

31 



l 
I 

DolPonware 
~ 

117 BLENHEIM ROAD, DEAL, KENT 

New Programs from DOLA SOF1WARE 

Front Panel Program for UK 101 
On meeting a breakpoint in your Machine Code program, our new Front Panel 
program shows all the registers in Hex, Decimal, Binary and Character (as for a 
POKE to the screen) . Any of these can be changed by moving the cursor around. In 
addition any part of the memory can be shown in the same format, and altered at 
will. The program occupies 1.25K starting at 1800, but a free BASIC program, used 
in conjunction with the Extended Monitor, allows relocation. The program is 
written for the New Monitor, but a CEGMON version is in preparation . Price £8.00 
on cassette. 

We also have a Text writer program for the UK 101 for both the New Monitor and 
CEGMON. This does not pretend to be a word processor, but allows you to write 
text, add and delete lines, print the text, save it on cassette and load it back for 
modification. The program also solves the problem, which not everyone knows 
about, of dropped characters when reading text from tape. This is due to the 
garbage collector doing its thing while reading your data! 
Price £3.00 for documented listing; add £2.00 for cassette. 

The Dola Software library contains stand alone programs in BASIC and many 
routines, often in Machine Code, that you build into your own programs . These 
include graphics routines, PIA based programs including an accurate Frequency 
Meter, A Y-3-8910 music chip subroutines and programs and a very fast large digit 
(7x5 pixel) screen display. There are also some original games. 

The programs are written for the UK101 using the New Monitor, but for the 
Superboard and CEGMON, only minor changes will be needed . 

Send an SAE (large) for the catalogue. 

For Sale. 
C2-4P. 20K RAM. Cegmon. 2MHz. room for 12K more RAM on board. Manuals 
and numerous tapes, chess, utility etc. £335. 
Ring 070-682-6188 after 6pm (Lancashire) 

NEW IMPROVED CHARACTER SET in EPROM for your UK 101/Superboard (please 
state which). Includes a full set of Pixel graphics characters, maths, electronic, 
gaming and other symbols . 

Price £8.00 (+50p P & P) to User Group Members. Reprogramming service 
available. Send SAE for more details or phone Harrogate 503276. J.O. Linton, 110 
Duey Road, Harrogate, HG1 2HB. 

32 

,,. 

. ' J 

PROGRAMMABLE SOUND GENERATOR - Velvet Software, bought as kit for £50, 
pu t in case, stereo DIN socket, 3 channel select switches, 4 software-controlled 
relays, 2 1/0 parts, control signals available on 38-way edge connector. Connects 
via 20-way cable and D-connector. FAULTY and wiring needs to be done on 
C1/SUPERBOARD/UK101. Cost £65. Only £40. 
N.A. Cannon. Tel. (0737) 65863. 

I c~,..·r ~ 
~'tr l'LL 8 

" !;,sr~" ' rn~?'f.,,.,:::"" 
T'o Voe.)~ J m : 21h'@ft? r 
I' I ,,<.11 

· ,°a~·~~ ; \ 
~)),- t i :v\ ' ~ . 

r1 ' I 

\ ,: ) II) J t \ 

~ 

/4 
I) J/JJilwy_' . . 

~~~@/[:~•-• ~-
'11111 

-
33 



,,. 

BASICS for UK101 and OHIO 

The most devastating enhancement yet, adding 
17 new BASIC words to your interpreter which 
can be used in program lines and give machine­
code respose speed to graphics and formatting 

HUN, VLIN , SCR, BLK, SET and TEST allow 
generation and manipulation of graphics at 
speeds which are unobtainable in BASIC 

PRINTUSING, PRINTAT, INAT allow total control 
of screen input/output 

GET (key), RD (Read DATA) , GS and GT (GOSUB 
and GOTO a variable) , GO and GO$ (GOTO a 
machine-code routine ) allow total program 
flexibility 

WI and CWI allow CEGMON users to manipulate 
their screen under variable co ntrol , using one 
command, in Hex or Decimal 

BASIC 5 is available for CEGMON, SYNMON, 
and MONO1 /2 only . State precisely your compu­
ter and monitor when ordering. Comes com­
plete with comprehensive manual. 
Available on DISK or in EPROM (9000hex) £19.95 

BASIC4 cassette file handling system 

This new EPROM for the UK101/OHIO provides a 
comprehensive file-handling system, capable of 
working at up to 4800 baud . 
• named programs to cassette 
• v,erify tape contents facility 
• reliable high-speed save/ load 
• selectable auto-run of loaded BASIC 
program 
• crash recovery command (OLD) 
• original SAVE/LOAD commands unaltered 
• reduces LOAD /SAVE times 
• seven new SAVE/LOAD commands• non­
destructive memory test 
• initialises BASICS automatically if resident 
BASIC4 is a plug-in replacement for your existing 
BASIC4 ROM, PRICE £11.95 

CEGMON - ONLY £25.87 inc 

TOOLKIT 2 for UK101/OHIO 

The most powerful TOOLKIT on the market, 
TOOLKIT 2 gives you all the following facilities in 
only one EPROM. 

REPL exceptionally powerful Global Search and 
Replace of BASIC listings . 

DUPL copy a line into a new line 
LIST/ controlled listing of program 
FIND anything in a BASIC !l6ting 
RENUM renumber from any start in any incre­

ment - full error messages, totall y reliable . 
AUTO generate new line numbers automatically , 

any start , any increment. 
DELETE high-speed block line delete . 
VIEW examine cassette contents without loading 

to memory. 
TRACE superb trace feature - screen tran spa­

rent . Can be turned on and off within a 
program 

MC enter the monitor quickly! 
TOOLKIT 2 also lists the relevant line of BASIC 
where any error occurs and cures the warm- start 
'OM ERROR' bug. 
Available ·n EPROM only (8000hex), for CEG­
MON, MONO 1/2, and SYNMON monitors 
(DISK soon). Price £19.95. State machin e and 
monitor when ordering. 

INVADERS 

Quite simply the best machine -code game ever 
written for the UK101/OHIO . PREMIER have 
succeeded where others have failed . Our IN­
VADERS is faster than any version we have yet 
seen, including Arcade machines . INVADERS 
has all the features you expect , plus superb 
graphics and two-player option . A firm favourite 
with all our customers. NOW AVAILABLE for 
CIE/CIU in addition to UK101. 
PRICE £7.95 

Also now available for 32 x 48 CEGMON-based 
UK101 BASIC 1 or 5 machine s is KAMIKAZE 
INVADERS - a new slant on thi s popular game . 
£5.95 

All the above products (except CEGMON} are available only from Premier. 
Phone or write todaY, for our extensive UK101/OHIO catalogue. 

12 Kingscote Road, A<ldiscombe, Croydon, Surrey 01-656"'6156 

from 
~· 

SCOPYM a single disk copier 

' ~C:OPYM provides a fast, foolproof method of 
, reating a new, useable disk from a Master . It 
wi ll copy the first fourteen tracks of a disk in 
.,ro und 1.25 minutes . All coping is automatic. 
~COPYM provides a safe, simple and extremely 
IJst and efficient way of creating a new disk . It is 
supp lied complete with comprehensive notes . 
for 5.25" OS65D users only . 

SOU NDN.I.A. BOARD 

I he TES II VINSOUND kit gives you up to 56 
Inpu t/Ou tput lin e, and progammable sound 
!!t'nera tion . lnorder to allow you total flexibility 
in designing you r system, we are offering the kit 
111 low-co st packs. 
I h1• Base Kit cons ists of PCB, connector, address 
dt>< odi ng and buff ering , plus IC sockets . 
lht> Sound Pack consists of AY-3-8910 sound 
1 hip, amp lifier and components . 
I he Via Pack consists of VIA and support. 
IIASE KIT £24.95 SOUND £11.95 VIA £9.95. 

SPECIAL OFFERS 

WORD W IZARD + MINI EPRON BOARD 
IOOL KIT2 + MINI EPROM BOARD 
IIASIC 5 + MINI EPROM BOARD 
< ODEKIT + MINI EPROM BOARD 
~OUND N IA - Base, Sound and VIA ki ts 

SPECIAL OFFERS 

1OOL KIT 2 + MINI EPROM BOARD 
HASIC 5 + MINI EPROM BOARD 
< ODEKIT + MINI EPROM BOARD 
~OU ND/V IA - Base, Sound and VIA kits 

£29.95 
£29.95 
£29.95 
£29.95 
£43.95 

29.95 
£29.95 
£29.95 
£43.95 

CHRISTMAS GAMES PACK 

Available for the UK101, Superboard, TRS80, 
Video Genie , SHARP and Microtan , PR~MIER's 
Christmas Games Pack will entertain youngsters 
and challenge adults . Super Santa, Reindeer 
Roundup and Toboggan Run. Three-game pack 
for only £7.95 

COMPACT 

This useful machine -code program provide, 
UK101/OHIO users with a utility that they have 
been waiting for - a BASIC line compactor . 
COM PACT look s at the resident BASIC program 
and adds lines together wherever possible , thus 
aid ing runn ing speed and saving memory space. 
It is an ext remely reliable way of compacting 
your program . COMPACT lives at the top end of 
your memory and will run with any mon itor -
please state memory size when ordering . PRICE 
£7.95 

TES II HARDWARE RANGE 

produ ct 
8KRAM BOARD 
BK EPROM BOARD 
8 Slot MOTHERBOARD+ PSU 
JI BUFFER BOARD 
MINI EPROM/ROM BOARD 
SCREEN ENHANCEMENT KIT 

kit 
£29.95 
£29.95 
£29.95 
£19.95 
£14.95 
£55.95 

PRINTERS from £175.00 upwards 

built 
£39.95 
£39.95 
£39.95 
£29.95 
£20.95 
£69.95 

Phone PREMIER for our best price on ANY 
curr ently available printer . 
KSR PRINTERS ONLY £175 inc VAT - a simp le 
two-wire connect ion to any UK101/OHIO . RING 
FOR AVAILABILITY . 

POSTAGE AND PACKING 

Software 60p per order, EPROMS/ 
DISKS 80p per order, HARDWARE 
£1.50 _per item. Maximum £3.00. 
ALL PRICES INCLUDE V.A.T. 

ublications 



~ ---------------- - -.,....-

Planning Cards and Pads 
A complete range of planning and programming aids from Word smith s. Laminated 
A4 cards and 100-sheet pads , ready punched for a standard 2-ring binder, at a price 
that's less than photocopying your own. Bring some order into your programming 
notes and planning! 

I 

ASCII ch•ruter set - - _ _,, __ 
- - I I J _! 4 J 

Number NH con.enions 
~ - ~ - W....,to uns,. 

----------------I .;; f I J J 4 J 6 7 I 9 A I C O' t I ~ 

j _ , 6502 opcodes , -:; 

•• 

-­,.,..,. 
l'ro,ramme , 

Chdenget p.tphia ch•Kter set 
a..,,,_,...........,°""'_...,"" 

Z X )C X .,,. .; ~ ~ i. ~ .- ..., ~ ♦ • • ...... , ...... ·- ·-, .. ·- .......... " "' ·-... ·-
"' Jhtt1 of 

UM , ..... . IM.1 ..... \uW J-..c... 

·---+----

--

"';' -... 

-
I I I 1- 1 -t ~-~ I; 

I------,-

·-·· ---4 -~--------11 7 

f--

• 1 1 l J 
]~•~~ ! ;Q ~ R R ti 

~ f f ' l 
' ! ! ! ; 
! 

l 
- l ! 

• X 

E i 
• I f 

· J 1 

1I 
ii 
11 

~ 
I I I -+-#---, -----
l==t=f - t=--J--=-___ --:+---==== ::..f- -----

---• - --j , .. 

1-+----l - ----l---- 1- -~- + - -- - ___J I'> 

~--

-~- ---l ~ 

/ --

Video (cards and pads) Superboard: 25x25, 32X48, 32x64 . UKlOl : 16x 48, 32x 64. 
C2/C4: 32x32, 32X64. 
Programming {cards and pads) BASIC, Machine-code /Assembly lang uage, Vari­
ables list, Labels list, Memory planner 1 (256 bytes), Memory planner 2 (2 x 128 
bytes). 

Reference (cards only) Hex/decimal/binary conversions to 6553510, ASCII character 
set, Ohio graphics character set, 6502 opcodes (mnemonics and values). 

Cards65p each; pads 225p each, including VAT and postage (minimum order £3.00 
please) . 

Wordsmi.ths West End, Street, Somerset BA16 OLQ 

✓-

-~, ,. 

c W, ---c _, 
I I 

.... 
The Back Page Program 

1'1 Rl::)vl **BACK PA.GE PROGRA.'~** 
iJ REM 
J.,j REM *~TWENTY ')UL:5TION S** 
4 ,j 1-?l::M 
~J REM Adapted fro~ 
6J REM "fales of the \4arvelous Machine", 
/<l HfM by Caylor dnd Green, 
. ·i.1 H t:: 1~ C re a t i v e Corn p u t i n '1 Pr e s s • 
(),J R_t:M 
l tJ.o PRINT CHRSU6)Sf-H: ~~ Clear scre e n 
11 ~ PR f N f" We 1 come to the Ja.ne•• 
12. ✓.l PR INT''of Twenty Questions. 11 

13,1 PRINfzPRINT"l3y ::iskin1 quP.stions" 
14J PRINf''which r)::ive YES or NO an s wers,'' 
l'..)J PRINT"try to qOess the object 
16~ PRINf''l h-=ive in mind." 
I / ,j PRINT"Be sure to end edch q1Jestion• 1 

I .-L1 f-lKlfH"with -:i question m-9rk. 11 

IJ ✓-J PRl 1'-1f:PI-UNf 11A simole ,,, ends the :Jro1rarn 11 :r>~I:-IT 
L,1.:J AS= 11 .A.tlOlli" :C0=.1 
L l .J CO=CU+ l 
LbJ PKINf''Your question n11moer 11 ;Co 
i JJ I N?UT OS 
LJ:.> IF OS= 11 ? 11 , fHc: ·~ J EM 
24,1 IF RIGHTSCOS, I>="?" TIH::N 2R0 
2Jo PKI/H''Sorry, that isn't a question. 11 

2.6J ? RINT"Please try ,-:ir"}ain!'' 
2. 10 Goro 220 
2 i0 AJEi W i:R=0 
i9, 1 J-0:-? I= I TO 6 . 
3,M IF MIDS(OS,Lt:N(l)S)-1,1 J=MlUS(i\S,1,1) fHt:N ANS,fr:!-i=I 
ilJ Nt: ,<.f I 
JJ.o H)? Ill/A= I [0 1 '1·,J<'.1*i?t'-lUt I ) : rH:Xf ,IA 
330 IF ANSi'll:K frlc:N PRINr 11n :S 11:GoT o 35 0 
M .::l Pf-?lr~r• 1 NO" 
J::i0 Pf-?INf 
J,>-1 I J- CO<20 THc:i-1 2 I;:, 
3 /tJ PfilNf"Th~t's the end ot this round: 11 

3,iJ INt1Uf"Would you like to try av~in 11 ;1)$ 
J,; ,1 IF AjC(QS)<>A,:jC("Y") THEN END 

.1-' 1-?U ~ 


